Skip to main content

Modified Boron-Doped Diamond Electrodes for Sensors and Electroanalysis

  • Chapter
  • First Online:
Diamond Electrodes

Abstract

Boron-doped diamond (BDD) has been established as a superior electrode among other conventional solid electrodes due to its unique properties, such as very low background current, wide potential window, and high physical and chemical stability. However, in compare to metal electrodes, BDD has much lower kinetic activity in some important chemical reactions, which causes limitation for sensor and biosensor applications. Modification of BDD surface with redox-active particles/compounds was reported to facilitate electron transfer between the BDD substrate and analytes with a significant reduction in activation overpotential; therefore, the catalytic activity and sensitivity are improved. In addition, the modification can increase the selectivity in some reactions. On the other hand, to have a stable modified surface of BDD electrode is not easy, since the main composition of BDD is carbon atoms with sp3 configuration, which is very compact and stable, and actually one of the advance characteristics of BDD electrodes. However, the stability of the BDD surface causes the modified surface to be easily detached or dissolved after several usages. In this chapter, preparations and applications of the modified BDD for electrochemical sensors and biosensors are described and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pleskov YV (2002) Russ J Electrochem 38:1275–1291

    Article  CAS  Google Scholar 

  2. Hupert M, Muck A, Wang J, Stotter J, Cvackova Z, Haymond S, Show Y, Swain GM (2003) Diam Relat Mater 12:1940–1949

    Article  CAS  Google Scholar 

  3. Kraft A (2007) Int J Electrochem Sci 2:355–385

    CAS  Google Scholar 

  4. Macpherson JV (2015) Phys Chem Chem Phys 17:2935–2949

    Article  CAS  PubMed  Google Scholar 

  5. Xu J, Granger MC, Chen Q, Strojek JW, Lister TE, Swain GM (1997) Anal Chem 69

    Google Scholar 

  6. Yano T, Popa E, Tryk DA, Hashimoto K, Fujishima A (1999) J Electrochem Soc 146:1081–1087

    Article  CAS  Google Scholar 

  7. Watanabe T, Honda Y, Kanda K, Einaga Y (2014) Phys Status Solidi Appl Mater Sci 211:2709–2717

    Article  CAS  Google Scholar 

  8. Ivandini TA, Saepudin E, Wardah Harmesa H, Dewangga N, Einag Y (2012) Anal Chem 84:9825–9832

    Google Scholar 

  9. Ivandini TA, Harmesa E. Saepudin, Einaga Y (2015) Anal Sci 31:643–649

    Google Scholar 

  10. Su L, Qiu X, Guo L, Zhang F, Tung C (2004) Sens Actuat B Chem 99:499–504

    Article  CAS  Google Scholar 

  11. Zhou Y, Zhi J (2009) Talanta 79:1189–1196

    Article  CAS  PubMed  Google Scholar 

  12. Mansano GR, Eisele APP, Dall’Antonia LH, Afonso S, Sartori ER (2015) J Electroanal Chem 738:188–194

    Google Scholar 

  13. Asai K, Ivandini TA, Falah MM, Einaga Y (2016) Electroanalysis 28:177–182

    Article  CAS  Google Scholar 

  14. Ivandini TA, Einaga Y (2013) Electrocatal 4:367–374

    Article  CAS  Google Scholar 

  15. Jiwanti PK, Natsui K, Nakata K, Einaga Y (2016) RSC Adv 6:102214–102217

    Article  CAS  Google Scholar 

  16. Natsui K, Iwakawa H, Ikemiya N, Nakata K, Einaga Y (2018) Angew Chemie Int Ed 57:2639–2643

    Article  CAS  Google Scholar 

  17. Muharam S, Jiwanti PK, Irkham, Gunlazuardi J, Einaga Y, Ivandini TA (2019) Diam Relat Mater 99:107464

    Google Scholar 

  18. Stolarczyk K, Nazaruk E, Rogalski J, Bilewicz R (2007) Electrochem commun 9:115–118

    Article  CAS  Google Scholar 

  19. Cañizares P, Larrondo F, Lobato J, Rodrigo MA, Sáez C (2005) J Electrochem Soc 152:191–196

    Article  Google Scholar 

  20. Shibano S, Ivandini TA, Terashima C, Nakata N, Einaga Y (2014) Chem Lett 43:1292–1293

    Article  CAS  Google Scholar 

  21. Waldvogel SR, Lips S (2019) ChemElectroChem 6:1649–1660

    Article  Google Scholar 

  22. Honda Y, Ivandini TA, Watanabe T, Murata K, Einaga Y (2013) Diam Relat Mater 40:7–11

    Article  CAS  Google Scholar 

  23. Ullah M, Rana AM, Ahmed E, Raza R, Shah ZA, Ahmad EM (2017) J Ovonic Res 13:187–194

    CAS  Google Scholar 

  24. Yamamoto T, Riehl B, Naba K, Nakahara K, Wiebe A, Saitoh T, Waldvogel SR, Einaga Y (2018) Chem Commun 54:2771–2773

    Article  CAS  Google Scholar 

  25. Eguiluz KIB, Peralta-Hernández JM, Hernández-Ramírez A, Guzmán-Mar JL, Hinojosa-Reyes L, Martínez-Huitle CA, Salazar-Banda GR (2012) Int J Electrochem 1–20

    Google Scholar 

  26. Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K (2019) Anal Chim Acta 1077:30–66

    Google Scholar 

  27. Luong JHT, Male KB, Glennon JD (2009) Analyst 134:1965–1979

    Article  CAS  PubMed  Google Scholar 

  28. Cobb SJ, Ayres ZJ, Macpherson JV (2018) Annu Rev Anal Chem 11:463–484

    Article  CAS  Google Scholar 

  29. Alfaro MAQ, Ferro S, Martínez-Huitle CA, Vong YM (2006) J Braz Chem Soc 17:227–236

    Article  CAS  Google Scholar 

  30. Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR (2018) Angew Chemie Int Ed 57:6018–6041

    Article  Google Scholar 

  31. Waldvogel SR, Elsler B (2012) Electrochim Acta 82:434–443

    Article  CAS  Google Scholar 

  32. Yuliarto B, Zulhendry DW, Septiani NLW, Irzaman Ferdiansjah, Fahmi Nugraha MZ (2019) Mater Sci Forum 947 MSF:35–39

    Google Scholar 

  33. Darmokoesoemo H, Habibulah MR, Harsini M, Kusuma HS (2016) J Mater Environ Sci 7:2731–2738

    CAS  Google Scholar 

  34. Kusuma HS, Sholihuddin RI, Harsini M, Darmokoesoemo H (2016) J Mater Environ Sci 7:1454–1460

    CAS  Google Scholar 

  35. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2004) Chem Lett 33:1330–1331

    Article  CAS  Google Scholar 

  36. Uchikado R, Rao TN, Tryk DA, Fujishima A (2001) Chem Lett 2:144–145

    Article  Google Scholar 

  37. Nantaphol S, Chailapakul O, Siangproh W (2015) Anal Chim Acta 891:136–143

    Article  CAS  PubMed  Google Scholar 

  38. Meier J, Hofferber E, Stapelton JA, Iverson NM (2019) Chemosensors 7:64

    Article  CAS  Google Scholar 

  39. Yoo E-H, Lee S-Y (2010) Sensors 10:4558–4576

    Article  PubMed  PubMed Central  Google Scholar 

  40. Salimi A, Hyde ME, Banks CE, Compton RG (2004) Analyst 29:9

    Google Scholar 

  41. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2006) Anal Chem 78:6291–6298

    Article  CAS  PubMed  Google Scholar 

  42. Gong Z, Hu N, Ye W, Zheng K, Li C, Ma L, Wei Q, Yu Z, Zhou K, Huang N, Lin C-T, Luo J (2019) J Electroanal Chem 841:135–141

    Article  CAS  Google Scholar 

  43. Toghill KE, Xiao L, Phillips MA, Compton RG (2010) Sens Actuat B Chem 147:642–652

    Article  CAS  Google Scholar 

  44. Yagi I, Ishida T, Uosaki K (2004) Electrochem Commun 6:773–779

    Article  CAS  Google Scholar 

  45. Tian RH, Rao TN, Einaga Y, Zhi JF (2006) Chem Mater 18:939–945

    Article  CAS  Google Scholar 

  46. Mattos-Costa FI, De Lima-Neto P, Machado SAS, Avaca LA (1998) Electrochim Acta 44

    Google Scholar 

  47. Salazar-Banda GR, Suffredini HB, Avaca LA (2005) J Braz Chem Soc 16:903–906

    Article  CAS  Google Scholar 

  48. Suffredini HB, Salazar-banda GR, Tanimoto ST, Calegaro ML, Machado SAS, Avaca LA (2006) J Braz Chem Soc 17:257–264

    Google Scholar 

  49. Salazar-Banda GR, Suffredini HB, Calegaro ML, Tanimoto ST, Avaca LA (2006) J Power Sourc 162:9–20

    Article  CAS  Google Scholar 

  50. Toghill KE, Compton RG (2010) Electroanalysis 22:1947–1956

    Article  CAS  Google Scholar 

  51. Jiwanti PK, Aritonang R, Abdullah I, Einaga Y, Ivandini TA (2019) Makara J Sci 23:5

    Google Scholar 

  52. Sugitani A, Watanabe T, Ivandini TA, Iguchi T, Einaga Y (2013) Phys Chem Chem Phys 15:142–147

    Article  CAS  PubMed  Google Scholar 

  53. Ivandini TA, Watanabe T, Matsui T, Ootani Y, Iizuka S, Toyoshima R, Kodama H, Kondoh H, Tateyama Y, Einaga Y (2018) J Phys Chem C 123:5336–5344

    Article  Google Scholar 

  54. Ivandini TA, Rao TN, Fujishima A, Einaga Y (2006) Anal Chem 78:3467–3471

    Article  CAS  PubMed  Google Scholar 

  55. Martin HB, Argoitia A, Landau U, Anderson AB, Angus JC (1996) J Electrochem Soc 143:L133-136

    Article  CAS  Google Scholar 

  56. Notsu H, Yagi I, Tatsuma T, Tryk DA, Fujishima A (1999) Electrochem Solid-State Lett 2:522

    Article  CAS  Google Scholar 

  57. Yagi I, Notsu H, Kondo T, Tryk DA, Fujishima A (1999) J Electroanal Chem 472:173

    Article  Google Scholar 

  58. Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T, Okushi H, Kajimura K (1997) J Appl Phys 81:744

    Article  CAS  Google Scholar 

  59. Popa E, Notsu H, Miwa T, Tryk DA, Fujishima A (1999) Electrochem Solid State Lett 2:49–51

    Article  CAS  Google Scholar 

  60. Popa E, Kubota Y, Tryk DA, Fujishima A (2002) Anal Chem 72:1724

    Article  Google Scholar 

  61. Terashima C, Rao TN, Sarada BV, Tryk DA (2002) A Fujishima. Anal Chem 74:895

    Article  CAS  PubMed  Google Scholar 

  62. Lee J, Park S-M (2005) Anal Chim Acta 545:27

    Google Scholar 

  63. Granger MC, Swain GM (1999) J Electrochem Soc 146:4551

    Article  CAS  Google Scholar 

  64. Vanhove E, de Sanoit J, Arnault J-C (2007) Phys Stat Solidi (A) Appl Mater Sci 204:2931−2939

    Google Scholar 

  65. Rismetov B, Ivandini TA, Saepudin E, Einaga Y (2014) Diam Relat Mater 48:88–95

    Article  CAS  Google Scholar 

  66. Shpilevaya I, Smirnov W, Hirsz S, Yang N, Nebel CE, Foord JS (2014) RSC Adv 4:531–537

    Article  CAS  Google Scholar 

  67. Gao F, Yang N, Nebel CE (2013) Electrochim Acta 112:493–499

    Article  CAS  Google Scholar 

  68. Wulandari R, Ivandini, Irkham TA, Saepudin E, Einaga Y (2019) Sensors Mater 31:1105–1117

    Google Scholar 

  69. Agustiany T, Khalil M, Einaga Y, Jiwanti PK, Ivandini TA (2020) Mat Chem Phys 244:122723

    Google Scholar 

  70. Nantaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y (2017) Biosens Bioelectron 98:76–82

    Article  CAS  PubMed  Google Scholar 

  71. Mavrokefalos CK, Hasan M, Khunsin W, Schmidt M, Maier SA, Rohan JF, Compton RG, Foord JS (2017) Electrochim Acta 243:310–319

    Article  CAS  Google Scholar 

  72. Mavrokefalos CK, Nelson GW, Poll CG, Compton RG, Foord JS (2015) Phys Status Solidi Appl Mater Sci 212:2559–2567

    Article  CAS  Google Scholar 

  73. Mavrokefalos CK, Hasan M, Rohan JF, Foor JS (2017) ChemElectroChem 5:455−463

    Google Scholar 

  74. Chen L, Hu J, Foord JS (2017) Phys Status Solidi Appl Mater Sci 209:601–1820

    Google Scholar 

  75. Wahyuni WT, Ivandini TA, Jiwanti PK, Endang S, Gunlazuardi J, Einaga Y (2015) Electrochemistry 83:357–362

    Article  CAS  Google Scholar 

  76. Wahyuni WT, Ivandini TA, Saepudin E, Einaga Y (2016) Anal Biochem 497:68–75

    Article  CAS  PubMed  Google Scholar 

  77. Ivandini TA, Yamada D, Watanabe T, Matsuura H, Nakano N, Fujishima A, Einaga Y (2010) J Electroanal Chem 645:58–63

    Article  CAS  Google Scholar 

  78. Ivandini TA, Einaga Y (2013) Electrocatalysis 4:367–374

    Article  CAS  Google Scholar 

  79. Stradiotto NR, Toghill KE, Xiao L, Moshar A, Compton RG (2009) Electroanalysis 21:2627–2633

    Article  CAS  Google Scholar 

  80. Jiang L, Hu J, Foord JS (2015) Electrochim Acta 176:488–496

    Article  CAS  Google Scholar 

  81. Pop A, Lung S, Orha C, Manea F (2018) Int J Electrochem Sci 13:2651–2660

    Article  CAS  Google Scholar 

  82. Toghill KE, Xiao L, Wildgoose GG, Compton RG (2009) Electroanalysis 21:1113–1118

    Article  CAS  Google Scholar 

  83. Sadok I, Tyszczuk-Rotko K, Nosal-Wiercińska A (2016) Sensors Actuators B Chem 235:263–272

    Article  CAS  Google Scholar 

  84. Gardner PR (1987) Mater Des 8:210–219

    Article  CAS  Google Scholar 

  85. Takeuchi Y, Makita Y, Mori M, Ohnishi N, Shibata H, Matsumori T (1989) Mater Res Soc 144:483–488

    Article  CAS  Google Scholar 

  86. Mazzoldi P, Arnold GW, Battaglin G, Bertoncello R, Gonella F (1994) Nucl Inst Methods Phys Res B 91:478–492

    Article  CAS  Google Scholar 

  87. Yamashita H, Honda M, Harada M, Ichihashi Y, Anpo M, Hirao T, Itoh N, Iwamoto N (1998) J Phys Chem B 102:10707–10711

    Article  CAS  Google Scholar 

  88. Sealy BJ (1988) Int Mater Rev 33:38–52

    Article  CAS  Google Scholar 

  89. Magruder RH, Haglund RF, Yang L, Wittig JE, Zuhr RA (1994) J Appl Phys 76:708–715

    Article  CAS  Google Scholar 

  90. Teranishi N, Fuse G, Sugitani M (2018) Sensors (Switzerland) 18. https://doi.org/10.3390/s18072358

  91. Picraux ST (1984) Annu Rev Mater Sci 14:335–372

    Article  CAS  Google Scholar 

  92. Sugitani M (2014) Rev Sci Instrum 85:1–4

    Article  Google Scholar 

  93. Ohnishi K, Einaga Y, Notsu H, Terashima C, Rao TN, Park SG, Fujishima A (2002) Electrochem Solid-State Lett 5:13–15

    Article  Google Scholar 

  94. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2004) Diam Relat Mater 13:2003–2008

    Article  CAS  Google Scholar 

  95. Treetepvijit S, Chuanuwatanakul S, Einaga Y, Sato R, Chailapakul O (2005) Anal Sci 21:531–535

    Article  CAS  PubMed  Google Scholar 

  96. Treetepvijit S, Preechaworapun A, Praphairaksit N, Chuanuwatanakul S, Einaga Y, Chailapakul O (2006) Talanta 68:1329–1335

    Article  CAS  PubMed  Google Scholar 

  97. Jiao J, Wang J, Chen Q, Hu J (2011) J Electrochem Soc 158:230–235

    Article  Google Scholar 

  98. Kalish R, Reznik A, Nugent KW, Prawer S (1999) Nucl Inst Methods Phys Res B 148:626

    Article  CAS  Google Scholar 

  99. Yamada D, Ivandini TA, Komatsu M, Fujishima A, Einaga Y (2008) J Electroanal Chem 615:145–153

    Article  CAS  Google Scholar 

  100. Ivandini TA, Wicaksono WP, Saepudin E, Rismetov B, Einaga Y (2015) Talanta 134:136–143

    Article  CAS  PubMed  Google Scholar 

  101. Weng J, Xue J, Wang J, Ye JS, Cui H, Sheu FS, Zhang Q (2005) Adv Funct Mater 15:639–647

    Article  CAS  Google Scholar 

  102. Song MJ, Lee SK, Lee JY, Kim JH, Lim DS (2012) J Electroanal Chem 677–680:139–144

    Article  Google Scholar 

  103. Ke H, Liu M, Zhuang L, Li Z, Fan L, Zhao G (2014) Electrochim Acta 137:146–153

    Article  CAS  Google Scholar 

  104. Zheng K, Longn H, Wei Q, Ma L, Qiao L, Li C, Meng L, Lin C-T, Jiang Y, Zhao T et al (2019) J Electrochem Soc 166:B373–B380

    Article  CAS  Google Scholar 

  105. Luhur MSP, Ivandini TA, Khalil M (2018) AIP Conf Proc 2023. https://doi.org/10.1063/1.5064089

  106. Welch CM, Hyde ME, Banks CE, Compton RG (2005) Anal Sci 21:1421–1430

    Article  CAS  PubMed  Google Scholar 

  107. Kurniawan AD, Saepudin E, Ivandini TA (2019) IOP Conf Ser Mater Sci Eng 496. https://doi.org/10.1088/1757-899X/496/1/012063

  108. Terashima C, Rao TN, Sarada BV, Spataru N, Fujishima A (2003) J Electroanal Chem 544:65–74

    Article  CAS  Google Scholar 

  109. Deng Z, Long H, Wei Q, Yu Z, Zhou B, Wang Y, Zhang L, Li S, Ma L, Xie Y et al (2017) Sensors Actuators B Chem 242:825–834

    Article  CAS  Google Scholar 

  110. Toghill KE, Xiao L, Stradiotto NR, Compton RG (2010) Electroanalysis 22:491–500

    Article  CAS  Google Scholar 

  111. Hrapovic S, Liu Y, Luong JHT (2007) Anal Chem 79:500–507

    Article  CAS  PubMed  Google Scholar 

  112. Ivandini TA, Ariani J, Jiwanti PK, Gunlazuardi J, Saepudin E, Einaga Y (2017) Makara J Sci 21:34–42

    Article  CAS  Google Scholar 

  113. Hutton L, Newton ME, Unwin PR, Macpherson JV (2009) Anal Chem 81:1023–1032

    Article  CAS  PubMed  Google Scholar 

  114. Sim H, Kim JH, Lee SK, Song MJ, Yoon DH, Lim DS, Hong SI (2012) Thin Solid Films 520:7219–7223

    Article  CAS  Google Scholar 

  115. Chiku M, Watanabe T, Einaga Y (2010) Diam Relat Mater 19:673–679

    Article  CAS  Google Scholar 

  116. Altintas Z, Kallempudi SS, Gurbuz Y (2014) Talanta 118:270–276

    Article  CAS  PubMed  Google Scholar 

  117. Haruta M, Ueda A, Tsubota S, Torres Sanchez RM (1996) Catal Today 29:443–447

    Google Scholar 

  118. Culková E, Tomčík P, Švorc Ľ, Cinková K, Chomisteková Z, Durdiak J, Rievaj M, Bustin D (2014) Electrochim Acta 148:317–324

    Article  Google Scholar 

  119. Sochr J, Machková M, Machyňák Ľ, Čacho F, Švorc Ľ (2016) Acta Chim Slovaca 9:28–35

    Article  CAS  Google Scholar 

  120. Marton M, Michniak P, Behul M, Rehacek V, Vojs Stanova A, Redhammer R, Vojs M (2019) Vacuum 167:182–188

    Google Scholar 

  121. Belghiti DK, Zadeh-Habchi M, Scorsone E, Bergonzo P (2016) Procedia Eng 168:428–431

    Article  CAS  Google Scholar 

  122. Zribi B, Dragoe D, Scorsone E (2019) Sensors Actuators B Chem 290:147–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by PUPT Kementerian Riset Dan Teknologi/Badan Riset Dan Inovasi Nasional Tahun Anggaran 2020. Contract No. NKB-330/UN2.RST/HKP.05.00/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tribidasari A. Ivandini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiwanti, P.K., Atriardi, S.R., Putri, Y.M.T.A., Ivandini, T.A., Einaga, Y. (2022). Modified Boron-Doped Diamond Electrodes for Sensors and Electroanalysis. In: Einaga, Y. (eds) Diamond Electrodes. Springer, Singapore. https://doi.org/10.1007/978-981-16-7834-9_13

Download citation

Publish with us

Policies and ethics