Skip to main content

Nature of Sand and Dust Storm in South Asian Region: Extremities and Environmental Impacts

  • Chapter
  • First Online:
Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation

Abstract

Sand and dust storms (SDS) are very important atmospheric extreme events that occurred under the influence of turbulent winds with dust particles in any arid region. These are the lower atmospheric meteorological events and their environmental implications are being recognized in recent years due to their growing significance with the climate, human health, and socio-economy. The SDS involves a reduction of visibility to less than 1000 m. The identification of SDS events and their frequency is important to assess their role as climatological and geomorphological agents. The SDS events pose a challenge to the goals of sustainable development. Generally, SDS is a common atmospheric phenomenon in arid, semi-arid, and dry sub-humid areas, though it can travel thousands of kilometers across the countries and oceans, and depends on the wind speed and particle size distribution. Sometimes, SDS accumulate other pollutants on their way and transport them from one place. On the routes of transportation SDS also affects the regional biogeochemical cycle. SDS have a several beneficial and adverse impact on the environment. The primary impacts of SDS events include atmospheric radiation balance, regional precipitation, and hurricane activity. The SDS events are also responsible for elevated levels of fine particulates in the atmosphere that are associated with premature mortality and cardiovascular problems, respiratory problems, lung carcinoma, and severe respiratory tract infections. Such inhaled fine particle is not only composed of fine mineral particles but also contains a hazardous mixture of chemicals, spores, microorganisms, fungi, and harmful allergens. Apart from their adverse effects on human health, they also pose several economic impacts such as disturbance of infrastructures, transportation, and supply chain set-ups. SDS events are also responsible for the elimination of the top fertile layer of the soil resulting in the decrease in the mineral content in the soil that ultimately affects the plant health and productivity of the landmass. The United Nations General Assembly (UNGA) adopted resolutions entitled “Combatting sand and dust storms” in 2015 and mentioned that SDS signify a major obstruction to the sustainable development that affect developing nations and their peoples. The objective of the current paper is to understand the nature and phenomena of SDS processes, current and past trends of SDS impacts, as well as to understand the impact of SDS hazards on environment and human health as well as extremities and their correlation with climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbot DS, Halevy I (2010) Dust aerosol important for Snowball Earth deglaciation. J Clim 23(15):4121–4132

    Article  Google Scholar 

  • Abdussalam A, Monaghan A, Dukic V, Hayden M, Hopson T, Leckebusch G (2013) Meteorological influences on the interannual variability of meningitis incidence in northwest Nigeria. In EGU General Assembly Conference Abstracts, p EGU2013-7600

    Google Scholar 

  • Abish B, Mohanakumar K (2013) Absorbing aerosol variability over the Indian subcontinent and its increasing dependence on ENSO. Glob Planet Chang 106:13–19

    Article  Google Scholar 

  • Arden Pope C III, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56(6):709–742

    Article  Google Scholar 

  • Arden Pope C III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109(1):71–77

    Article  Google Scholar 

  • Atkinson RW, Bremner SA, Ross Anderson H, Strachan DP, Martin Bland J, Ponce de Leon A (1999) Short-term associations between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London. Arch Environ Health 54(6):398–411

    Article  CAS  Google Scholar 

  • Bae S, Hong YC (2018) Health effects of particulate matter. J Korean Med Assoc 61(12):749–755

    Article  Google Scholar 

  • Barlow M, Cullen H, Lyon B (2002) Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J Clim 15(7):697–700

    Article  Google Scholar 

  • Bhattacharjee PS, Prasad AK, Kafatos M, Singh RP (2007) Influence of a dust storm on carbon monoxide and water vapor over the Indo-Gangetic Plains. J Geophys Res Atmos 112(D18)

    Google Scholar 

  • Birmili W, Kerstin Schepanski A, Ansmann G, Spindler I, Tegen B, Wehner AN et al (2008) A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine. Atmos Chem Phys 8(4):997–1016

    Article  CAS  Google Scholar 

  • Bonan GB (1997) Effects of land use on the climate of the United States. Clim Chang 37(3):449–486

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P (2013) Clouds and aerosols. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 571–657

    Google Scholar 

  • Brook RD, Rajagopalan S, Arden Pope C III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F et al (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378

    Article  CAS  Google Scholar 

  • Chen R, Kan H, Chen B, Huang W, Bai Z, Song G, Pan G (2012) Association of particulate air pollution with daily mortality: the China Air Pollution and Health Effects Study. Am J Epidemiol 175(11):1173–1181

    Article  Google Scholar 

  • Chen WQ, Zhao XL, Hou Y, Li ST, Hong Y, Wang DL, Cheng YY (2009) Protective effects of green tea polyphenols on cognitive impairments induced by psychological stress in rats. Behav Brain Res 202(1):71–76

    Article  CAS  Google Scholar 

  • Choobari OA, Zawar-Reza P, Sturman A (2012) Feedback between windblown dust and planetary boundary-layer characteristics: sensitivity to boundary and surface layer parameterizations. Atmos Environ 61:294–304

    Article  CAS  Google Scholar 

  • Creamean JM, Suski KJ, Rosenfeld D, Cazorla A, DeMott PJ, Sullivan RC, White AB et al (2013) Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science 339(6127):1572–1578

    Article  CAS  Google Scholar 

  • Cuevas Agulló E (2013) Establishing a WMO sand and dust storm warning advisory and assessment system regional node for West Asia: current capabilities and needs: technical report. WMO, UNEP, Collection(s) and Series: WMO- No. 1122

    Google Scholar 

  • Dey S, Tripathi SN, Singh RP, Holben BN (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res Atmos 109(D20)

    Google Scholar 

  • Dockery DW (2001) Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect 109(Suppl 4):483–486

    Article  CAS  Google Scholar 

  • Evan AT, Dunion J, Foley JA, Heidinger AK, Velden CS (2006) New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys Res Lett 33(19)

    Google Scholar 

  • Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW, Kellogg CA, Majewski MS, Richardson LL, Ritchie KB, Smith GW (2003) African and Asian dust: from desert soils to coral reefs. Bioscience 53(5):469–480

    Article  Google Scholar 

  • Gillett D, Morales C (1979) Environmental factors affecting dust emission by wind erosion. Saharan Dust 71–94

    Google Scholar 

  • Goel A, Saxena P, Sonwani S, Rathi S, Srivastava A, Bharti AK, Jain S, Singh S, Shukla A, Srivastava A (2021) Health benefits due to reduction in respirable particulates during COVID-19 lockdown in India. Aerosol Air Qual Res 21:200460

    Article  Google Scholar 

  • Goudie AS (2009) Dust storms: recent developments. J Environ Manag 90(1):89–94

    Article  Google Scholar 

  • Goudie AS (2014) Desert dust and human health disorders. Environ Int 63:101–113

    Article  CAS  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56(1–4):179–204

    Article  CAS  Google Scholar 

  • Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer Science & Business Media

    Google Scholar 

  • Gross A, Turner BL, Goren T, Berry A, Angert A (2016) Tracing the sources of atmospheric phosphorus deposition to a tropical rain forest in Panama using stable oxygen isotopes. Environ Sci Technol 50(3):1147–1156

    Article  CAS  Google Scholar 

  • Grousset FE, Ginoux P, Bory A, Biscaye PE (2003) Case study of a Chinese dust plume reaching the French Alps. Geophys Res Lett 30(6)

    Google Scholar 

  • Guan X, Huang J, Zhang Y, Xie Y, Liu J (2016) The relationship between anthropogenic dust and population over global semi-arid regions. Atmos Chem Phys 16(8):5159–5169

    Article  CAS  Google Scholar 

  • Guan Q, Sun X, Yang J, Pan B, Zhao S, Wang L (2017) Dust storms in northern China: long-term spatiotemporal characteristics and climate controls. J Clim 30(17):6683–6700

    Article  Google Scholar 

  • Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383(9928):1581–1592

    Article  CAS  Google Scholar 

  • Hallock P (2001) Coral reefs, carbonate sediments, nutrients, and global change. In: The history and sedimentology of ancient reef systems. Springer, Boston, pp 387–427

    Chapter  Google Scholar 

  • Han Y, Dai X, Fang X, Chen Y, Kang F (2008) Dust aerosols: a possible accelerant for an increasingly arid climate in North China. J Arid Environ 72(8):1476–1489

    Article  Google Scholar 

  • HEI, 2010. Outdoor Air Pollution and Health in the Developing Countries of Asia: A Comprehensive Review, Special Report 18, Health Effects Institute, Boston, USA

    Google Scholar 

  • Herman JR, Bhartia PK, Torres O, Hsu C, Seftor C, Celarier E (1997) Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J Geophys Res Atmos 102(D14):16911–16922

    Article  CAS  Google Scholar 

  • Highwood EJ, Ryder CL (2014) Radiative effects of dust mineral dust: a key player in the earth system. In: Knippertz P, Stuut JB (eds). pp 267–283

    Google Scholar 

  • Hong Y-C, Pan X-C, Kim S-Y, Park K, Park E-J, Jin X, Yi S-M et al (2010) Asian dust storm and pulmonary function of school children in Seoul. Sci Total Environ 408(4):754–759

    Article  CAS  Google Scholar 

  • Huang JP, Liu JJ, Chen B, Nasiri SL (2015) Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos Chem Phys 15(20):11653–11665

    Article  CAS  Google Scholar 

  • Indoitu R, Orlovsky L, Orlovsky N (2012) Dust storms in Central Asia: spatial and temporal variations. J Arid Environ 85:62–70

    Article  Google Scholar 

  • Jickells T, Moore CM (2015) The importance of atmospheric deposition for ocean productivity. Annu Rev Ecol Evol Syst 46:481–501

    Article  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, laRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torre R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  CAS  Google Scholar 

  • Jiménez E, Linares C, Martínez D, Díaz J (2010) Role of Saharan dust in the relationship between particulate matter and short-term daily mortality among the elderly in Madrid (Spain). Sci Total Environ 408(23):5729–5736

    Article  CAS  Google Scholar 

  • Jugder D, Shinoda M, Sugimoto N, Matsui I, Nishikawa M, Park S-U, Chun Y-S, Park M-S (2011) Spatial and temporal variations of dust concentrations in the Gobi Desert of Mongolia. Glob Planet Chang 78(1–2):14–22

    Article  Google Scholar 

  • Kanatani KT, Ito I, Al-Delaimy WK, Adachi Y, Mathews WC, Ramsdell JW (2010) Desert dust exposure is associated with increased risk of asthma hospitalization in children. Am J Respir Crit Care Med 182(12):1475–1481

    Article  Google Scholar 

  • Kashima S, Yorifuji T, Bae S, Honda Y, Lim Y-H, Hong Y-C (2016) Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos Environ 128:20–27

    Article  CAS  Google Scholar 

  • Kaskaoutis DG, Houssos EE, Rashki A, Francois P, Legrand M, Goto D, Bartzokas A, Kambezidis HD, Takemura T (2016) The Caspian Sea–Hindu Kush Index (CasHKI): a regulatory factor for dust activity over southwest Asia. Glob Planet Chang 137:10–23

    Article  Google Scholar 

  • Kaskaoutis DG, Rashki A, Houssos EE, Legrand M, Francois P, Bartzokas A, Kambezidis HD, Dumka UC, Goto D, Takemura T (2017) Assessment of changes in atmospheric dynamics and dust activity over southwest Asia using the Caspian Sea–Hindu Kush Index. Int J Climatol 37:1013–1034

    Article  Google Scholar 

  • Kaskaoutis DG, Houssos EE, Solmon F, Legrand M, Rashki A, Dumka UC, Francois P, Gautam R, Singh RP (2018) Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall. Atmos Res 201:189–205

    Article  Google Scholar 

  • Kedia S, Kumar R, Islam S, Sathe Y, Kaginalkar A (2018) Radiative impact of a heavy dust storm over India and surrounding oceanic regions. Atmos Environ 185:109–120

    Article  CAS  Google Scholar 

  • Kellogg CA, Griffin DW, Garrison VH, Kealy Peak K, Royall N, Smith RR, Shinn EA (2004) Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia 20(2):99–110

    Article  Google Scholar 

  • Knippertz P (2014) Meteorological aspects of dust storms. In: Mineral dust. Springer, Dordrecht, pp 121–147

    Google Scholar 

  • Krishnan A (1978) Climatic changes relating to desertification in the arid zone of north West India. Annals of Arid Zone (India) 16(3):302–309

    Google Scholar 

  • Kureshy KU, Ahmad KSU (1977) A geography of Pakistan. Oxford University Press

    Google Scholar 

  • Lee JA, Gill TE (2015) Multiple causes of wind erosion in the Dust Bowl. Aeolian Res 19:15–36

    Article  Google Scholar 

  • Li F, Ginoux P, Ramaswamy V (2008) Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: contribution of major sources. J Geophys Res Atmos 113(D10)

    Google Scholar 

  • Loer SA, Scheeren TW, Tarnow J (1997) How much oxygen does the human lung consume? J Am Soc Anesthesiol 86(3):532–537

    Article  CAS  Google Scholar 

  • Mahowald NM, Kiehl LM (2003) Mineral aerosol and cloud interactions. Geophys Res Lett 30(9):1475

    Article  Google Scholar 

  • Mahowald NM, Luo C (2003) A less dusty future? Geophys Res Lett 30(17)

    Google Scholar 

  • Mahowald NM, Hamilton DS, Mackey KR, Moore JK, Baker AR, Scanza RA, Zhang Y (2018) Aerosol trace metal leaching and impacts on marine microorganisms. Nat Commun 9(1):1–15

    Article  CAS  Google Scholar 

  • Maji S, Ahmed S, Siddiqui WA (2015) Air quality assessment and its relation to potential health impacts in Delhi, India. Curr Sci 109(5):902–909

    CAS  Google Scholar 

  • Maji S, Ahmed S, Siddiqui WA, Ghosh S (2017) Short term effects of criteria air pollutants on daily mortality in Delhi, India. Atmos Environ 150:210–219

    Article  CAS  Google Scholar 

  • Maji S, Ghosh S, Ahmed S (2018) Association of air quality with respiratory and cardiovascular morbidity rate in Delhi, India. Int J Environ Health Res 28(5):471–490

    Article  CAS  Google Scholar 

  • Maji S, Ahmed S, Ghosh S, Garg SK (2020) Evaluation of air quality index for air quality data interpretation in Delhi, India. Curr Sci 119(6):1019–1026

    Article  CAS  Google Scholar 

  • Maley J (1982) Dust, clouds, rain types, and climatic variations in tropical North Africa. Quat Res 18(1):1–16

    Article  Google Scholar 

  • Martin RV, Jacob DJ, Yantosca RM, Chin M, Ginoux P (2003) Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J Geophys Res Atmos 108(D3)

    Google Scholar 

  • McKendry IG, Hacker JP, Stull R, Sakiyama S, Mignacca D, Reid K (2001) Long-range transport of Asian dust to the lower Fraser Valley, British Columbia, Canada. J Geophys Res Atmos 106(D16):18361–18370

    Article  CAS  Google Scholar 

  • McTainsh GH, Pitblado JR (1987) Dust storms and related phenomena measured from meteorological records in Australia. Earth Surf Process Landf 12(4):415–424

    Article  Google Scholar 

  • Middleton NJ (1986) A geography of dust storms in South-west Asia. J Climatol 6(2):183–196

    Article  Google Scholar 

  • Middleton N, Kang U (2017) Sand and dust storms: impact mitigation. Sustainability 9(6):1053

    Article  CAS  Google Scholar 

  • Middleton NJ, Sternberg T (2013) Climate hazards in drylands: a review. Earth Sci Rev 126:48–57

    Article  Google Scholar 

  • Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Clim 11(12):3247–3267

    Article  Google Scholar 

  • Miller RL, Cakmur RV, Perlwitz J, Geogdzhayev IV, Ginoux P, Koch D, Kohfeld KE et al (2006) Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J Geophys Res Atmos 111(D6)

    Google Scholar 

  • Mostofsky E, Schwartz J, Coull BA, Koutrakis P, Wellenius GA, Suh HH et al (2012) Modeling the association between particle constituents of air pollution and health outcomes. Am J Epidemiol 176(4):317–326

    Article  Google Scholar 

  • Muhs DR, Prospero JM, Baddock MC, Gill TE (2014) Identifying sources of aeolian mineral dust: present and past. In: Mineral dust. Springer, Dordrecht, pp 51–74

    Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1(3):189–195

    Article  CAS  Google Scholar 

  • Nenes A, Murray B, Bougiatioti A (2014) Mineral dust and its microphysical interactions with clouds. In: Mineral dust. Springer, Dordrecht, pp 287–325

    Google Scholar 

  • Nickovic S, Vukovic A, Vujadinovic M, Djurdjevic V, Pejanovic G (2012) High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling. Atmos Chem Phys 12(2):845–855

    Article  CAS  Google Scholar 

  • Nogueira JB (2009) Air pollution and cardiovascular disease. Port J Cardiol 28(6):715–733

    Google Scholar 

  • Nogueira J, Evangelista H, de Morisson Valeriano C, Sifeddine A, Neto C, Vaz G, Moreira LS et al (2021) Dust arriving in the Amazon basin over the past 7,500 years came from diverse sources. Commun Earth Environ 2(1):1–11

    Article  Google Scholar 

  • Oerlemans J, Giesen RH, Van den Broeke MR (2009) Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). J Glaciol 55(192):729–736

    Article  Google Scholar 

  • Okin GS, Baker AR, Tegen I, Mahowald NM, Dentener FJ, Duce RA, Galloway JN, Hunter K, Kanakidou M, Kubilay N, Prospero JM (2011) Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus, and iron. Glob Biogeochem Cycles 25(2)

    Google Scholar 

  • Otani S, Onishi K, Mu H, Yokoyama Y, Hosoda T, Okamoto M, Kurozawa Y (2012) The relationship between skin symptoms and allergic reactions to Asian dust. Int J Environ Res Public Health 9(12):4606–4614

    Article  Google Scholar 

  • Otani S, Onishi K, Mu H, Hosoda T, Kurozawa Y, Ikeguchi M (2014) Associations between subjective symptoms and serum immunoglobulin E levels during Asian dust events. Int J Environ Res Public Health 11(8):7636–7641

    Article  CAS  Google Scholar 

  • Pandey SK, Vinoj V, Landu K, Babu SS (2017) Declining pre-monsoon dust loading over South Asia: signature of a changing regional climate. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Pandithurai G, Dipu S, Dani KK, Tiwari S, Bisht DS, Devara PCS, Pinker RT (2008) Aerosol radiative forcing during dust events over New Delhi, India. J Geophys Res Atmos 113(D13)

    Google Scholar 

  • Prasad AK, Singh RP (2007) Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic Plains using AERONET and MODIS data. J Geophys Res Atmos 112(D9)

    Google Scholar 

  • Prasad AK, Singh S, Chauhan SS, Srivastava MK, Singh RP, Singh R (2007) Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms. Atmos Environ 41(29):6289–6301

    Article  CAS  Google Scholar 

  • Prospero JM, Mayol-Bracero OL (2013) Understanding the transport and impact of African dust on the Caribbean basin. Bull Am Meteorol Soc 94(9):1329–1337

    Article  Google Scholar 

  • Qian W, Quan L, Shi S (2002) Variations of the dust storm in China and its climatic control. J Clim 15(10):1216–1229

    Article  Google Scholar 

  • Ramanathan VCPJ, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124

    Article  CAS  Google Scholar 

  • Rezazadeh M, Irannejad P, Shao Y (2013) Climatology of the Middle East dust events. Aeolian Res 10:103–109

    Article  Google Scholar 

  • Rosenberg NJ, Blad BL, Verma SB (1983) Microclimate: the biological environment. Wiley

    Google Scholar 

  • Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL et al (2015) Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med 372(14):1333–1341

    Article  CAS  Google Scholar 

  • Sajani SZ, Hänninen O, Marchesi S, Lauriola P (2011) Comparison of different exposure settings in a case–crossover study on air pollution and daily mortality: counterintuitive results. J Expo Sci Environ Epidemiol 21(4):385–394

    Article  CAS  Google Scholar 

  • Samet JM, Dominici F, Curriero F, Coursac I, Zeger SL (2000) Particulate air pollution and mortality in 20 US cities: 1987–1994. New Engl J Med 343:1742–1757

    Article  CAS  Google Scholar 

  • Saxena P, Naik V (eds) (2018) Air pollution: sources, impacts and controls. Cabi, Wallingford, pp 1–217

    Google Scholar 

  • Saxena P, Sonwani S (2019a) Criteria air pollutants: chemistry, sources and sinks. In: Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 7–48

    Chapter  Google Scholar 

  • Saxena P, Sonwani S (2019b) Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 1–157

    Book  Google Scholar 

  • Saxena P, Srivastava A (eds) (2020) Air pollution and environmental health. Springer-Nature, Singapore, pp 1–253

    Google Scholar 

  • Saxena P, Sonwani S, Sharma SK, Kumar P, Chandra N (2020) Carbonaceous aerosol variations in foggy days: a critical analysis during the fireworks festival. Fresenius Environ Bull 29(8):6639–6656

    CAS  Google Scholar 

  • Saxena P, Srivastava A, Sonwani S (2021) Impact of dust storms on air quality and human health in Delhi. In: Health adaptation and resilience to climate change and related disasters - a compendium of case studies. National Institute of Disaster Management, New Delhi, pp 127–147

    Google Scholar 

  • Shao Y, Yang Y, Wang J, Song Z, Leslie LM, Dong C, Zhang Z, Lin Z, Kanai Y, Yabuki S, Chun Y (2003) Northeast Asian dust storms: real-time numerical prediction and validation. J Geophys Res Atmos 108(D22)

    Google Scholar 

  • Shao Y, Wyrwoll KH, Chappell A, Huang J, Lin Z, McTainsh GH, Mikami M, Tanaka TY, Wang X, Yoon S (2011) Dust cycle: an emerging core theme in Earth system science. Aeolian Res 2(4):181–204

    Article  Google Scholar 

  • Sikka DR (1997) Desert climate and its dynamics. Curr Sci 72:35–46

    Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res Atmos 109(D23)

    Google Scholar 

  • Snead RE (1968) Weather patterns in southern West Pakistan. Arch Meteorol Geophys Bioklimatol Ser B 16(4):316–346

    Article  Google Scholar 

  • Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381(6584):681–683

    Article  CAS  Google Scholar 

  • Sonwani S, Kulshreshtha U (2016) Particulate matter levels and it’s associated health risks in East Delhi. In: Proceedings of Indian aerosol science and technology association conference on aerosol and climate change: insight and challenges. IASTA Bull, vol 22, no 1–2

    Google Scholar 

  • Sonwani S, Kulshrestha UC (2019) PM 10 carbonaceous aerosols and their real-time wet scavenging during monsoon and non-monsoon seasons at Delhi, India. J Atmos Chem 76(3):171–200

    Article  CAS  Google Scholar 

  • Sonwani S, Saxena P (2021) Water-insoluble carbonaceous components in rainwater over an urban background location in Northern India during pre-monsoon and monsoon seasons. Environ Sci Pollut Res Int 28(38):53058–53073

    Article  CAS  Google Scholar 

  • Sonwani S, Saxena P, Kulshrestha U (2016) Role of global warming and plant signaling in BVOC emissions. In: Plant responses to air pollution. Springer, Singapore, pp 45–57

    Chapter  Google Scholar 

  • Sonwani S, Saxena P, Shukla A (2021a) Carbonaceous aerosol characterization and their relationship with meteorological parameters during summer monsoon and winter monsoon at an industrial region in Delhi, India. Earth and Space. Science 8(4):e2020EA001303

    Google Scholar 

  • Sonwani S, Yadav A, Saxena P (2021b) Atmospheric brown carbon: a global emerging concern for climate and environmental health. Management of Contaminants of Emerging Concern (CEC). Environment 1:225–247

    Google Scholar 

  • Sonwani S, Madaan S, Arora J, Suryanarayan S, Rangra D, Mongia N, Vats T, Saxena P (2021c) Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: a review. Front Sustain Cities 3(690444):1–20

    Google Scholar 

  • Sonwani S, Saxena P, Khillare PS (2022) Profile of atmospheric particulate PAHs near busy roadway in tropical megacity, India. Inhal Toxicol 34(1–2):39–50

    Article  CAS  Google Scholar 

  • Stanelle T, Bey I, Raddatz T, Reick C, Tegen I (2014) Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. J Geophys Res Atmos 119(23):13–526

    Article  Google Scholar 

  • Stout JE, Warren A, Gill TE (2009) Publication trends in aeolian research: an analysis of the Bibliography of Aeolian Research. Geomorphology 105(1–2):6–17

    Article  Google Scholar 

  • Sun J, Zhang M, Liu T (2001) Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. J Geophys Res Atmos 106(D10):10325–10333

    Article  Google Scholar 

  • Sun Y, Zhuang G, Wang Y, Zhao X, Li J, Wang Z, An Z (2005) Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway. J Geophys Res Atmos 110(D24)

    Google Scholar 

  • Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA (2017) The integral role of iron in ocean biogeochemistry. Nature 543(7643):51–59

    Article  CAS  Google Scholar 

  • Tanré D, Haywood J, Pelon J, Léon JF, Chatenet B, Formenti P, Francis P, Goloub P, Highwood EJ, Myhre G (2003) Measurement and modeling of the Saharan dust radiative impact: overview of the Saharan Dust Experiment (SHADE). J Geophys Res Atmos 108(D18)

    Google Scholar 

  • Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res Atmos 100(D9):18707–18726

    Article  Google Scholar 

  • Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31(5)

    Google Scholar 

  • Tegen I, Heinold B, Todd M, Helmert J, Washington R, Dubovik O (2006) Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign. Atmos Chem Phys 6(12):4345–4359

    Article  CAS  Google Scholar 

  • Tiwari S, Saxena P (2021) Air pollution and its complications. Springer-Nature, Singapore, pp 1–178

    Book  Google Scholar 

  • Tong DQ, Wang JXL, Gill TE, Lei H, Wang B (2017) Intensified duststorm activity and valley fever infection in the southwestern United States. Geophys Res Lett 44:4304–4312

    Article  Google Scholar 

  • UNEP, WMO, UNCCD (2016) Global assessment of sand and dust storms. United Nations Environment Programme, Nairobi. Editor: Gemma Shepherd, UNEP, Published by the United Nations Environment Programme (UNEP), available through UNEP Live (uneplive.unep.org), UNEP website (http://www.unep.org/publications)

  • United Nations, Economic and Social Commission for Asia and the Pacific (ESCAP) (2018) Sand and dust storms in Asia and the Pacific: opportunities for regional cooperation and action. United Nations Publication 2018, Bangkok

    Google Scholar 

  • Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu Z, Wang Z, Hara Y, Sugimoto N (2009) Asian dust transported one full circuit around the globe. Nat Geosci 2(8):557–560

    Article  CAS  Google Scholar 

  • Van Der Does M, Knippertz P, Zschenderlein P, Harrison RG, Stuut J-BW (2018) The mysterious long-range transport of giant mineral dust particles. Sci Adv 4(12):eaau2768

    Article  CAS  Google Scholar 

  • Verma S, Payra S, Gautam R, Prakash D, Soni M, Holben B, Bell S (2013) Dust events and their influence on aerosol optical properties over Jaipur in Northwestern India. Environ Monitor Assess 185(9):7327–7342

    Article  CAS  Google Scholar 

  • Williams PL, Sable DL, Mendez P, Smyth LT (1979) Symptomatic coccidioidomycosis following a severe natural dust storm: an outbreak at the Naval Air Station, Lemoore, Calif. Chest 76(5):566–570

    Article  CAS  Google Scholar 

  • WMO World Meteorological Organization (1975) International Cloud Atlas: manual on the observation of clouds and other meteors. WMO-No. 407

    Google Scholar 

  • World Bank (2019) Sand and dust storms in the Middle East and North Africa region: sources, costs, and solutions. World Bank. https://doi.org/10.1596/33036

  • World Health Organization (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide: report on a WHO working group, Bonn, Germany 13–15 January 2003. No. EUR/03/5042688. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • World Health Organization (2006) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update. World Health Organization, Geneva. http://www.euro.who.int/__data/assets/pdf_file/0005/78638E90038

    Google Scholar 

  • World Health Organization (2014) Burden of disease from ambient air pollution. Glob. Health Obs. Data

    Google Scholar 

  • Wu X, Liu J, Wu Y, Wang X, Yu X, Shi J, Bi J, Huang Z, Zhou T, Zhang R (2018) Aerosol optical absorption coefficients at a rural site in Northwest China: the great contribution of dust particles. Atmos Environ 189:145–152

    Article  CAS  Google Scholar 

  • Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Peacock J, Anderson RH et al (2003) The temporal pattern of respiratory and heart disease mortality in response to air pollution. Environ Health Perspect 111(9):1188–1193

    Article  CAS  Google Scholar 

  • Zarrin A, Ghaemi H, Azadi M, Mofidi A, Mirzaei E (2011) The effect of the Zagros Mountains on the formation and maintenance of the Iran Anticyclone using RegCM4. Meteorol Atmos Phys 112(3):91–100

    Article  Google Scholar 

  • Zhang XY, Gong SL, Zhao TL, Arimoto R, Wang YQ, Zhou ZJ (2003) Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys Res Lett 30(24)

    Google Scholar 

  • Zhao TL, Gong SL, Zhang XY, Jaffe DA (2008) Asian dust storm influence on North American ambient PM levels: observational evidence and controlling factors. Atmos Chem Phys 8(10):2717–2728

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maji, S., Sonwani, S. (2022). Nature of Sand and Dust Storm in South Asian Region: Extremities and Environmental Impacts. In: Saxena, P., Shukla, A., Gupta, A.K. (eds) Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation . Disaster Resilience and Green Growth. Springer, Singapore. https://doi.org/10.1007/978-981-16-7727-4_6

Download citation

Publish with us

Policies and ethics