Skip to main content

Contribution of Fog in Changing Air Quality: Extremities and Risks to Environment and Society

  • Chapter
  • First Online:
Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation

Part of the book series: Disaster Resilience and Green Growth ((DRGG))

  • 381 Accesses

Abstract

This chapter presents a brief review on the contribution of fog in changing air quality, its extremities and risks to environment and society. Fog is one of the extreme environmental phenomena which cause significant societal and economic problems specially as a great devastation to road and air traffic. As the hazardous effect of fog events is very high, their formation, spatial extent and evolution are needed to be investigated in detail. The detailed characterization of the formation and evolutionary mechanisms of fog pollution is necessary. The purpose of this chapter is to provide a brief outline on fog formation, development, distribution, characterization as well as its extremities and impacts on environment and society. In this chapter, we have started our study with the description of fog, its types and distribution worldwide, specifically in northern India. The microphysical structure, chemical composition and interactions which determine the behaviour of fog is also explained. The physicochemical characterization is described in detail which is necessary to understand the fog formation and its impact on environment and society. The chapter also describes the different factors responsible for fog formation. The different meteorological conditions and role of aerosol were explained which were amenable for fog formation. In the last section, the fog as an extreme event is described. The causes and their extremities on different aspects of environment and society are also provided in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Mutairi MK (2017) Fog: its causes, types, and dangers in Saudi Northern Borders (a climatic study). J Geogr 5:64–76

    Google Scholar 

  • Badarinath K, Latha KM, Chand TK, Reddy R, Gopal KR, Reddy LSS, Narasimhulu K, Kumar KR (2007) Black carbon aerosols and gaseous pollutants in an urban area in North India during a fog period. Atmos Res 85:209–216

    Article  CAS  Google Scholar 

  • Badarinath K, Kharol SK, Sharma AR, Roy P (2009) Fog over Indo-Gangetic plains—a study using multisatellite data and ground observations. IEEE J Select Top Appl Earth Observ Remote Sens 2:185–195

    Article  Google Scholar 

  • Baldocchi D, Waller E (2014) Winter fog is decreasing in the fruit growing region of the Central Valley of California. Geophys Res Lett 41:3251–3256

    Article  Google Scholar 

  • Bell AG (1885) Preventing collisions with icebergs in a fog. Science 5(122):460–461

    Article  CAS  Google Scholar 

  • Bergot T, Guedalia D (1994) Numerical forecasting of radiation fog. Part I: numerical model and sensitivity tests. Mon Weather Rev 122:1218–1230

    Article  Google Scholar 

  • Bi J, Huang J, Hu Z, Holben B, Guo Z (2014) Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013. J Geophys Res Atmos 119:9884–9900

    Article  Google Scholar 

  • Canada CE, Toth G (2010) The environment Canada handbook on fog and fog forecasting. Environment Canada

    Google Scholar 

  • Case ME (1916) Highway accidents in New York City during 1915. Q Publ Am Stat Assoc 15:318–323

    Google Scholar 

  • Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmos Environ 42:1–42

    Article  CAS  Google Scholar 

  • Chandra B, Sinha V, Hakkim H, Kumar A, Pawar H, Mishra A, Sharma G, Garg S, Ghude SD, Chate D (2018) Odd—even traffic rule implementation during winter 2016 in Delhi did not reduce traffic emissions of VOCs, carbon dioxide, methane and carbon monoxide. Curr Sci 00113891:114

    Google Scholar 

  • Chang D, Song Y, Liu B (2009) Visibility trends in six megacities in China 1973–2007. Atmos Res 94:161–167

    Article  Google Scholar 

  • Chaouch N, Temimi M, Weston M, Ghedira H (2017) Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region. Atmos Res 187:106–127

    Article  Google Scholar 

  • Chen H, Wang H (2015) Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J Geophys Res Atmos 120:5895–5909

    Article  Google Scholar 

  • Croft PJ, Burton AN (2006) Fog during the 2004–2005 winter season in the northern mid-Atlantic states: spatial characteristics and behaviors as a function of synoptic weather types. In: Proc. 12th Conf. on Aviation, Range and Aerospace Meteorology

    Google Scholar 

  • Dall’Osto M, Harrison R, Coe H, Williams P (2009) Real-time secondary aerosol formation during a fog event in London. Atmos Chem Phys 9:2459–2469

    Article  Google Scholar 

  • Deng J, Wang T, Jiang Z, Xie M, Zhang R, Huang X, Zhu J (2011) Characterization of visibility and its affecting factors over Nanjing, China. Atmos Res 101:681–691

    Article  CAS  Google Scholar 

  • Dimri A, Niyogi D, Barros A, Ridley J, Mohanty U, Yasunari T, Sikka D (2015) Western disturbances: a review. Rev Geophys 53:225–246

    Article  Google Scholar 

  • Duanyang L, Meijuan P, Jun Y, Guozheng Z, Wenlian Y, Zihua L (2010) Microphysical structure and evolution of a four-day persistent fog event in Nanjing in December 2006. J Meteorol Res 24:104–115

    Google Scholar 

  • Duynkerke PG (1991) Radiation fog: a comparison of model simulation with detailed observations. Mon Weather Rev 119:324–341

    Article  Google Scholar 

  • Duynkerke PG (1999) Turbulence, radiation and fog in Dutch stable boundary layers. Bound-Layer Meteorol 90:447–477

    Article  Google Scholar 

  • Eldridge RG (1969) Mist—the transition from haze to fog. Bull Am Meteorol Soc 50:422–427

    Article  Google Scholar 

  • Eldridge RG (1971) The relationship between visibility and liquid water content in fog. J Atmos Sci 28:1183–1186

    Article  Google Scholar 

  • Elias T, Haeffelin M, Drobinski P, Gomes L, Rangognio J, Bergot T, Chazette P, Raut J-C, Colomb M (2009) Particulate contribution to extinction of visible radiation: pollution, haze, and fog. Atmos Res 92:443–454

    Article  CAS  Google Scholar 

  • Fahey K, Pandis S, Collett J Jr, Herckes P (2005) The influence of size-dependent droplet composition on pollutant processing by fogs. Atmos Environ 39:4561–4574

    Article  CAS  Google Scholar 

  • Fang G-C, Lin S-C, Chang S-Y, Lin C-Y, Chou C-C, Wu Y-J, Chen Y-C, Chen W-T, Wu T-L (2011) Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan. J Environ Manag 92:1520–1527

    Article  CAS  Google Scholar 

  • Fischer KW, Witiw MR, Baars JA, Oke TR (2004) Atmospheric laser communication: new challenges for applied meteorology. Bull Am Meteorol Soc 85:725–732

    Article  Google Scholar 

  • Friedlein MT (2004) Dense fog climatology: Chicago O’Hare International Airport July 1996–April 2002. Bull Am Meteorol Soc 85:515–517

    Article  Google Scholar 

  • Gadher D, Baird T (2006) Cited 2007: airport dash as the fog lifts. The Sunday Times

    Google Scholar 

  • Gautam R, Singh MK (2018) Urban heat island over Delhi punches holes in widespread fog in the Indo-Gangetic Plains. Geophys Res Lett 45:1114–1121

    Article  Google Scholar 

  • Gautam R, Hsu NC, Kafatos M, Tsay SC (2007) Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J Geophys Res Atmos 112

    Google Scholar 

  • Ghude SD, Bhat G, Prabhakaran T, Jenamani R, Chate D, Safai P, Karipot A, Konwar M, Pithani P, Sinha V (2017) Winter fog experiment over the Indo-Gangetic plains of India. Curr Sci 00113891:112

    Google Scholar 

  • Giulianelli L, Gilardoni S, Tarozzi L, Rinaldi M, Decesari S, Carbone C, Facchini M, Fuzzi S (2014) Fog occurrence and chemical composition in the Po valley over the last twenty years. Atmos Environ 98:394–401

    Article  CAS  Google Scholar 

  • Goyal P, Budhiraja S, Kumar A (2014) Impact of air pollutants on atmospheric visibility in Delhi. Int J Geol Agric Environ Sci 2

    Google Scholar 

  • Gueye S (2014) Frequency, timing and temporal patterns of regional coastal Arctic fog in East Greenland. MSc Research Thesis, University of Amsterdam (Netherlands)

    Google Scholar 

  • Gultepe I, Isaac G, Cober S (2001) Ice crystal number concentration versus temperature for climate studies. Int J Climatol 21:1281–1302

    Article  Google Scholar 

  • Gultepe I, Tardif R, Michaelides S, Cermak J, Bott A, Bendix J, Müller MD, Pagowski M, Hansen B, Ellrod G (2007) Fog research: a review of past achievements and future perspectives. Pure Appl Geophys 164:1121–1159

    Article  Google Scholar 

  • Guo L, Guo X, Fang C, Zhu S (2015) Observation analysis on characteristics of formation, evolution and transition of a long-lasting severe fog and haze episode in North China. Sci China Earth Sci 58:329–344

    Article  CAS  Google Scholar 

  • Gupta T, Mandariya A (2013) Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environ Sci Pollut Res 20:5615–5629

    Article  CAS  Google Scholar 

  • Hameed S, Mirza MI, Ghauri B, Siddiqui Z, Javed R, Khan A, Rattigan O, Qureshi S, Husain L (2000) On the widespread winter fog in northeastern Pakistan and India. Geophys Res Lett 27:1891–1894

    Article  CAS  Google Scholar 

  • Harris A, Sluss JJ, Refai HH, LoPresti PG (2006) Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link. Opt Eng 45:086001

    Article  Google Scholar 

  • Herckes P, Marcotte A, Wang Y, Collett J Jr (2015) Fog composition in the Central Valley of California over three decades. Atmos Res 151:20–30

    Article  CAS  Google Scholar 

  • Holets S, Swanson RN (1981) High-inversion fog episodes in central California. J Appl Meteorol 20:890–899

    Article  Google Scholar 

  • Holton JR, Curry JA, Pyle JA (2003) Encyclopedia of atmospheric sciences. Academic

    Google Scholar 

  • Husain L, Ghauri B, Yang K, Khan AR, Rattigan O (2004) Application of the SO42−/Se tracer technique to study SO2 oxidation in cloud and fog on a time scale of minutes. Chemosphere 54:177–183

    Article  CAS  Google Scholar 

  • Jagels R, Jiang M, Marden S, Carlisle J (2002) Red spruce canopy response to acid fog exposure. Atmos Res 64:169–178

    Article  CAS  Google Scholar 

  • Jaswal AK, Kumar N, Prasad AK, Kafatos M (2013) Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables. Nat Hazards 68:929–954

    Article  Google Scholar 

  • Jenamani RK (2007) Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi. Curr Sci 93(3):314–322

    CAS  Google Scholar 

  • Jenamani RK, Kalsi A (2012) Micro-climatic study and trend analysis of fog characteristics at IGI airport New Delhi using hourly data (1981–2005). Mausam 63:203–218

    Article  Google Scholar 

  • Jia X, Guo X-L (2012) Impacts of anthropogenic atmospheric pollutant on formation and development of a winter heavy fog event. Chin J Atmos Sci 36:995–1008

    Google Scholar 

  • Kapoor R, Tiwari S, Ali K, Singh G (1993) Chemical analysis of fogwater at Delhi, North India. Atmos Environ Part A Gen Top 27:2453–2455

    Article  Google Scholar 

  • Kaul D, Gupta T, Tripathi S, Tare V, Collett J Jr (2011) Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ Sci Technol 45:7307–7313

    Article  CAS  Google Scholar 

  • Kedar D, Arnon S (2003) Optical wireless communication through fog in the presence of pointing errors. Appl Opt 42:4946–4954

    Article  Google Scholar 

  • Knott CG (1923) Collected scientific papers of John Aitken, LL. D.. FRS. University Press

    Google Scholar 

  • Kulkarni R, Jenamani RK, Pithani P, Konwar M, Nigam N, Ghude SD (2019) Loss to aviation economy due to winter fog in New Delhi during the winter of 2011–2016. Atmosphere 10:198

    Article  Google Scholar 

  • Lakhani A, Parmar RS, Satsangi GS, Prakash S (2007) Chemistry of fogs at Agra, India: influence of soil particulates and atmospheric gases. Environ Monit Assess 133:435–445

    Article  CAS  Google Scholar 

  • Lange CA, Matschullat J, Zimmermann F, Sterzik G, Wienhaus O (2003) Fog frequency and chemical composition of fog water—a relevant contribution to atmospheric deposition in the eastern Erzgebirge, Germany. Atmos Environ 37:3731–3739

    Article  CAS  Google Scholar 

  • Lewis DM (2004) Forecasting advective sea fog with the use of classification and regression tree analyses for Kunsan Air Base. In: AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND …

    Google Scholar 

  • Lewis J, Koracin D, Rabin R, Businger J (2003) Sea fog off the California coast: viewed in the context of transient weather systems. J Geophys Res Atmos 108

    Google Scholar 

  • Li Z, Liu D, Feng Y (2011a) Recent progress in the studies of the fog-water chemical characteristics in China. Acta Meteor Sin 69:544–554

    Google Scholar 

  • Li Z, Liu D, Yang J (2011b) The microphysical processes and macroscopic conditions of the radiation fog droplet spectrum broadening. Chin J Atmos Sci (In Chinese) 35

    Google Scholar 

  • Lutgens F, Tarbuck E (2004) The atmosphere: an introduction to meteorology. Pearson Education, Inc., New Jersey, 508 p

    Google Scholar 

  • Malm WC, Day DE (2001) Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos Environ 35:2845–2860

    Article  CAS  Google Scholar 

  • McAdie A (1929) Weather hazards in aviation. Sci Mon 29:66–71

    Google Scholar 

  • Mensbrugghe V (1892) The formation of fog and of clouds, translated from Ciel et Terre. Symons’s Mon Meteor Mag 27:40–41

    Google Scholar 

  • Meyer MB, Jiusto JE, Lala GG (1980) Measurements of visual range and radiation-fog (haze) microphysics. J Atmos Sci 37:622–629

    Article  Google Scholar 

  • Milmo D (2007) BAA counts the cost of December fog. Guardian Unlimited

    Google Scholar 

  • Munehiro K, Tokunaga RA, Asano M, Hagiwara T (2005) Effect of time and foggy conditions on subjective visibility: evaluation of retroreflective traffic control devices. Transp Res Rec 1911:85–104

    Article  Google Scholar 

  • Nair VS, Moorthy KK, Alappattu DP, Kunhikrishnan P, George S, Nair PR, Babu SS, Abish B, Satheesh S, Tripathi SN (2007) Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): impacts of local boundary layer processes and long-range transport. J Geophys Res Atmos 112

    Google Scholar 

  • Nolan PJ (2010) Meteorology the physics of the atmosphere, An introduction to the weather. Farmingdale State College State University of New York

    Google Scholar 

  • Neiburger M, Wurtele M (1949) On the nature and size of particles in haze, fog, and stratus of the Los Angeles region. Chem Rev 44:321–335

    Article  CAS  Google Scholar 

  • Niu S, Lu C, Liu Y, Zhao L, Lü J, Yang J (2010) Analysis of the microphysical structure of heavy fog using a droplet spectrometer: a case study. Adv Atmos Sci 27:1259–1275

    Article  Google Scholar 

  • Okland H, Gotaas Y (1995) Modelling and prediction of steam fog. Beitrage zur Physik der Atmosphare-Contributions to Atmospheric Physics 68:121–132

    Google Scholar 

  • Petäjä T, Järvi L, Kerminen V-M, Ding A, Sun J, Nie W, Kujansuu J, Virkkula A, Yang X, Fu C (2016) Enhanced air pollution via aerosol-boundary layer feedback in China. Sci Rep 6:18998

    Article  CAS  Google Scholar 

  • Pike WS (1998) The accident to a Boeing 737, 7T-VEE, on approach to Coventry Airport on 21 December 1994. Meteorol Appl 5:25–31

    Article  Google Scholar 

  • Pinnick RG, Hoihjelle D, Fernandez G, Stenmark E, Lindberg J, Hoidale G, Jennings S (1978) Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction. J Atmos Sci 35:2020–2032

    Article  CAS  Google Scholar 

  • Pu M, Zhang G, Yan W, Li Z (2008) Features of a rare advection-radiation fog event. Sci China Ser D Earth Sci 51:1044–1052

    Article  CAS  Google Scholar 

  • Quan J, Zhang Q, He H, Liu J, Huang M, Jin H (2011) Analysis of the formation of fog and haze in North China Plain (NCP). Atmos Chem Phys Discuss 11

    Google Scholar 

  • Rajput P, Singh DK, Singh AK, Gupta T (2018) Chemical composition and source-apportionment of sub-micron particles during wintertime over Northern India: new insights on influence of fog-processing. Environ Pollut 233:81–91

    Article  CAS  Google Scholar 

  • Ram K, Sarin M, Tripathi S (2010) A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: characterization, sources, and temporal variability. J Geophys Res Atmos 115

    Google Scholar 

  • Ram K, Sarin M, Sudheer A, Rengarajan R (2012) Carbonaceous and secondary inorganic aerosols during wintertime fog and haze over urban sites in the Indo-Gangetic Plain. Aerosol Air Qual Res 12:359–370

    Article  CAS  Google Scholar 

  • Ramachandran S, Rengarajan R, Jayaraman A, Sarin M, Das SK (2006) Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India. J Geophys Res Atmos 111

    Google Scholar 

  • Reilly JE, Rattigan OV, Moore KF, Judd C, Sherman DE, Dutkiewicz VA, Kreidenweis SM, Husain L, Collett JL Jr (2001) Drop size-dependent S (IV) oxidation in chemically heterogeneous radiation fogs. Atmos Environ 35:5717–5728

    Article  CAS  Google Scholar 

  • Renhe Z, Li Q, Zhang R (2014) Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci China Earth Sci 57:26–35

    Article  Google Scholar 

  • Roach W (1995) Back to basics: fog: part 2—the formation and dissipation of land fog. Weather 50:7–11

    Article  Google Scholar 

  • Robinson PJ (1989) The influence of weather on flight operations at the Atlanta Hartsfield International Airport. Weather Forecast 4:461–468

    Article  Google Scholar 

  • Ryznar E (1977) Advection-radiation fog near Lake Michigan. Atmos Environ 1967(11):427–430

    Article  Google Scholar 

  • Safai PD, Ghude S, Pithani P, Varpe S, Kulkarni R, Todekar K, Tiwari S, Chate DM, Prabhakaran T, Jenamani RK (2019) Two-way relationship between aerosols and fog: a case study at IGI airport, New Delhi. Aerosol Air Qual Res 19:71–79

    Article  CAS  Google Scholar 

  • Saxena P, Kulshrestha UC (2015) Scavenging of urban air emissions by Fog at Delhi, India. In AGU Fall Meeting Abstracts, vol. 2015, pp A33H-0274, December

    Google Scholar 

  • Saxena P, Kulshrestha UC (2016) Contribution of carbonaceous species in SOA formation during fog and non-fog period. J Chem Bio Phys Sci 7:31–48

    Google Scholar 

  • Saxena P, Sonwani S, Sharma SK, Kumar P, Chandra N (2020) Carbonaceous aerosol variations in foggy days: a critical analysis during the fireworks festival. Fresenius Environ Bull 29(8):6639–6656

    CAS  Google Scholar 

  • Seinfeld J, Pandis S (1998) Atmospheric chemistry and physics. Wiley, New York

    Google Scholar 

  • Shen X, Sun J, Zhang X, Zhang Y, Zhang L, Che H, Ma Q, Yu X, Yue Y, Zhang Y (2015) Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China. Atmos Environ 120:307–316

    Article  CAS  Google Scholar 

  • Shepard FD (1996) Reduced visibility due to fog on the highway. Transportation Research Board

    Google Scholar 

  • Shi Y, Chen J, Hu D, Wang L, Yang X, Wang X (2014) Airborne submicron particulate (PM1) pollution in Shanghai, China: chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. Sci Total Environ 473:199–206

    Article  CAS  Google Scholar 

  • Singh DK, Gupta T (2014) Field performance evaluation during fog-dominated wintertime of a newly developed denuder-equipped PM 1 sampler. Environ Sci Pollut Res 21:4551–4564

    Article  CAS  Google Scholar 

  • Singh VP, Gupta T, Tripathi SN, Jariwala C, Das U (2011) Experimental study of the effects of environmental and fog condensation nuclei parameters on the rate of fog formation and dissipation using a new laboratory scale fog generation facility. Aerosol Air Qual Res 11:140–154

    Article  CAS  Google Scholar 

  • Sonwani S, Saxena P (2021) Water-insoluble carbonaceous components in rainwater over an urban background location in Northern India during pre-monsoon and monsoon seasons. Environ Sci Pollut Res 28(38):53058–53073

    Article  CAS  Google Scholar 

  • Stewart RE, Yiu DT, Chung KK, Hudak DR, Lozowski EP, Oleskiw M, Sheppard BE, Szeto KK (1995) Weather conditions associated with the passage of precipitation type transition regions over eastern Newfoundland. Atmosphere-Ocean 33:25–53

    Article  Google Scholar 

  • Sun Y, Zhuang G, Tang A, Wang Y, An Z (2006) Chemical characteristics of PM2. 5 and PM10 in haze—fog episodes in Beijing. Environ Sci Technol 40:3148–3155

    Article  CAS  Google Scholar 

  • Syed FS, Körnich H, Tjernström M (2012) On the fog variability over south Asia. Clim Dyn 39:2993–3005

    Article  Google Scholar 

  • Tiwari S, Payra S, Mohan M, Verma S, Bisht DS (2011) Visibility degradation during foggy period due to anthropogenic urban aerosol at Delhi, India. Atmos Pollut Res 2:116–120

    Article  Google Scholar 

  • Underwood SJ, Ellrod GP, Kuhnert AL (2004) A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the GOES nighttime fog product. J Appl Meteorol 43:297–311

    Article  Google Scholar 

  • Villeneuve PJ, Leech J, Bourque D (2005) Frequency of emergency room visits for childhood asthma in Ottawa, Canada: the role of weather. Int J Biometeorol 50:48–56

    Article  Google Scholar 

  • Wang G, Zhang R, Gomez ME, Yang L, Zamora ML, Hu M, Lin Y, Peng J, Guo S, Meng J (2016) Persistent sulfate formation from London Fog to Chinese haze. Proc Natl Acad Sci 113:13630–13635

    Article  CAS  Google Scholar 

  • Whiffen B, Delannoy P, Siok S (2004) Fog: impact on road transportation and mitigation options. In: National Highway Visibility Conference, Madison, Wisconsin, USA, pp 1–12

    Google Scholar 

  • Willett HC (1928) Fog and haze, their causes, distribution, and forecasting. Mon Weather Rev 56(11):435–468

    Article  Google Scholar 

  • Yang J, Niu Z, Shi C, Liu D, Li Z (2010) Microphysics of atmospheric aerosols during winter haze/fog events in Nanjing. Huan Jing Ke Xue 31:1425–1431

    Google Scholar 

  • Yang F, Chen H, Du J, Yang X, Gao S, Chen J, Geng F (2012) Evolution of the mixing state of fine aerosols during haze events in Shanghai. Atmos Res 104:193–201

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang J, Xue H (2010) The challenge of improving visibility in Beijing. Atmos Chem Phys 10:7821–7827

    Article  CAS  Google Scholar 

  • Zhang Q, Yan R, Fan J, Yu S, Yang W, Li P, Wang S, Chen B, Liu W, Zhang X (2015) A heavy haze episode in Shanghai in December of 2013: characteristics, origins and implications. Aerosol Air Qual Res 15:1881–1893

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saraswati (2022). Contribution of Fog in Changing Air Quality: Extremities and Risks to Environment and Society. In: Saxena, P., Shukla, A., Gupta, A.K. (eds) Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation . Disaster Resilience and Green Growth. Springer, Singapore. https://doi.org/10.1007/978-981-16-7727-4_5

Download citation

Publish with us

Policies and ethics