Skip to main content

Ecological and Natural-Based Solutions as Green Growth Strategies for Disaster and Emergency Management of Air Pollution Extremes

  • Chapter
  • First Online:
Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation

Part of the book series: Disaster Resilience and Green Growth ((DRGG))

  • 416 Accesses

Abstract

Air Pollution, across the globe is worsening despite efforts. It is an international concern due to its transboundary nature and its impacts on regional and global scale. Pollutants that are emitted to the atmosphere become an active participant in atmospheric reactions thereby altering the atmospheric processes. These alterations facilitate threatening air pollution episodes, what we call as “Air Pollution Extremes”. These extremes harmfully effect human health and the environment. There are mooted proposals from the researchers to consider the air pollution extremes as disasters. Disaster management institutes and agencies are to be given with responsibilities on this regard. Air pollution extremes namely, fog, smog, and dust storms have been responsible for multiple deaths per event and serious environmental havoc. World Health Organization (WHO) regards air pollution as a prime factor for human mortality and is to be blamed for seven million deaths in the world every year; therefore, control measures are imminent. Though countries already have in place the legislations and regulating authorities for the control and mitigation of air pollution, many Asian countries like India are still struggling. In this chapter, a two-way “green approach” has been discussed—lowering the source strength, i.e., keeping a check on emissions right at the source and mitigating the pollution that has already been released to the atmosphere. Adopting “green concepts” in economic development and better city planning, and strategically built green covers could be a promising alternative to avert extreme air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhijith KV, Kumar P, Gallagher J, McNabola A, Baldauf R, Pilla F, Broderick B, Di Sabatino S, Pulvirenti B (2017) Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—a review. Atmos Environ 162:71–86

    Article  CAS  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper. No. 12–03. FAO, Rome

    Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45(13):2297–2309

    Article  CAS  Google Scholar 

  • Azad MAK (2016) Fog collection on plant surfaces and biomimetic applications. Doctoral dissertation, Universitäts-und Landesbibliothek Bonn

    Google Scholar 

  • Balaban O, de Oliveira JA (2018) Sustainable buildings for healthier cities: assessing the co-benefits of green buildings in Japan. J Clean Prod 163:S68–S78

    Article  Google Scholar 

  • Balakrishnan K, Dey S, Gupta T, Dhaliwal RS, Brauer M, Cohen AJ, Stanaway JD, Beig G, Joshi TK, Aggarwal AN, Sabde Y (2019) The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. Lancet Planet Health 3(1):e26–e39

    Article  Google Scholar 

  • Barker T, Bashmakov I, Bernstein L, Bogner JE, Bosch PR, Dave R, Metz B, Nabuurs GJ (2007) Contribution of working group III to the fourth assessment report of the IPCC: technical summary. In: Climate change 2007: mitigation contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change, intergovernmental panel on climate change 2009. Cambridge University Press, pp 27–93

    Google Scholar 

  • Barwise Y, Kumar P (2020) Designing vegetation barriers for urban air pollution abatement: a practical review for appropriate plant species selection. npj Clim Atmos Sci 3(1):1–19

    Article  CAS  Google Scholar 

  • Behnke K, Kleist E, Uerlings R, Wildt J, Rennenberg H, Schnitzler JP (2009) RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance. Tree Physiol 29(5):725–736

    Article  CAS  Google Scholar 

  • Bhatt MR (2018) Is air pollution a disaster in Indian cities? South Asia Disasters Issue 172:2–3

    Google Scholar 

  • Bhuyan P, Deka P, Prakash A, Balachandran S, Hoque RR (2018) Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environ Pollut 234:997–1010

    Article  CAS  Google Scholar 

  • Blagnyte R, Paliulis D (2010) Research into heavy metals pollution of atmosphere applying moss as bioindicator: a literature review. Environ Res Eng Manag 54(4):26–33

    Google Scholar 

  • Bower JS, Broughton GF, Stedman JR, Williams ML (1994) A winter NO2 smog episode in the UK. Atmos Environ 28(3):461–475

    Article  CAS  Google Scholar 

  • Boya J (2012) Ecological strategy of green urban design in urban renewal. The specific ecological measures for the existing urban ecological problems in China. In: 48th ISOCARP congress

    Google Scholar 

  • Bradley EF, Mulhearn PJ (1983) Development of velocity and shear stress distribution in the wake of a porous shelter fence. J Wind Eng Ind Aerodyn 15(1–3):145–156

    Article  Google Scholar 

  • Branford D, Fowler D, Moghaddam MV (2004) Study of aerosol deposition at a wind exposed forest edge using 210 Pb and 137 Cs soil inventories. Water Air Soil Pollut 157(1–4):107–116

    Article  CAS  Google Scholar 

  • Burney J, Ramanathan V (2014) Recent climate and air pollution impacts on Indian agriculture. Proc Natl Acad Sci 111(46):16319–16324

    Article  CAS  Google Scholar 

  • Cabaraban MT, Kroll CN, Hirabayashi S, Nowak DJ (2013) Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system. Environ Pollut 176:123–133

    Article  CAS  Google Scholar 

  • Calfapietra C, Fares S, Manes F, Morani A, Sgrigna G, Loreto F (2013) Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80

    Article  CAS  Google Scholar 

  • Calfapietra C, Peñuelas J, Niinemets Ü (2015) Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends Plant Sci 20(2):72–75

    Article  CAS  Google Scholar 

  • Cenci RM, Sena F, Bergonzoni M, Simonazzi N, Meglioli E, Canovi L, Locoro G, Trincherini P (2003) Use of mosses and soils for the monitoring of trace elements in three landfills, used as urban waste disposal sites. In: [Sardinia proceedings 2003]: from the ninth international waste management and landfill symposium, occurred on 6–10 October

    Google Scholar 

  • Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Wang S, Hao J, Zhang H, He C, Guo H (2017) A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 579:1000–1034

    Article  CAS  Google Scholar 

  • Churkina G, Grote R, Butler TM, Lawrence M (2015) Natural selection? Picking the right trees for urban greening. Environ Sci Pol 47:12–17

    Article  CAS  Google Scholar 

  • Crutzen PJ (2006) The “anthropocene”. In: Earth system science in the anthropocene. Springer, Berlin, Heidelberg, pp 13–18

    Chapter  Google Scholar 

  • Daimari R, Hoque RR, Nayaka S, Upreti DK (2013) Atmospheric heavy metal accumulation in epiphytic lichens and their phorophytes in the Brahmaputra Valley. Asian J Water Environ Pollut 10(4):1–2

    CAS  Google Scholar 

  • Daimari R, Bhuyan P, Hussain S, Nayaka S, Mazumder MJ, Hoque RR (2020) Biomonitoring by epiphytic lichen species—Pyxine cocoes (Sw.) Nyl.: understanding characteristics of trace metal in ambient air of different landuses in mid-Brahmaputra Valley. Environ Monit Assess 192(1):37

    Article  CAS  Google Scholar 

  • De US, Dandekar MM (2001) Natural disasters in urban areas. Deccan Geogr 39(2):1–12

    Google Scholar 

  • De US, Dube RK, Rao GP (2005) Extreme weather events over India in the last 100 years. J Ind Geophys Union 3:173–187

    Google Scholar 

  • Deka P, Hoque RR (2014) Incremental effect of festive biomass burning on wintertime PM10 in Brahmaputra Valley of Northeast India. Atmos Res 143:380–391

    Article  CAS  Google Scholar 

  • Deka P, Hoque RR (2015) Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia. Atmos Environ 108:125–132

    Article  CAS  Google Scholar 

  • Dey S, Tripathi SN, Singh RP, Holben BN (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res Atmos 109(D20)

    Google Scholar 

  • Dimri AP, Niyogi D, Barros AP, Ridley J, Mohanty UC, Yasunari T, Sikka DR (2015) Western disturbances: a review. Rev Geophys 53(2):225–246

    Article  Google Scholar 

  • Dimri AP, Chevuturi A, Niyogi D, Thayyen RJ, Ray K, Tripathi SN, Pandey AK, Mohanty UC (2017) Cloudbursts in Indian Himalayas: a review. Earth Sci Rev 168:1–23

    Article  Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Speizer FE (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329(24):1753–1759

    Article  CAS  Google Scholar 

  • Dragović S, Mihailović N (2009) Analysis of mosses and topsoils for detecting sources of heavy metal pollution: multivariate and enrichment factor analysis. Environ Monit Assess 157(1–4):383–390

    Article  CAS  Google Scholar 

  • EC (2015) Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities. European Commission, Brussels

    Google Scholar 

  • ETH Press Release (2019) How trees could help to save the climate. https://ethz.ch/en/news-and-events/eth-news/news/2019/07/how-trees-could-save-the-climate.html. Accessed 17 Sept 2020

  • Faldt J, Arimura GI, Gershenzon J, Takabayashi J, Bohlmann J (2003) Functional identification of AtTPS03 as (E)-β-ocimene synthase: a monoterpene synthase catalyzing jasmonate-and wound-induced volatile formation in Arabidopsis thaliana. Planta 216(5):745–751

    Article  CAS  Google Scholar 

  • Fernandez CC, Shevock JR, Glazer AN, Thompson JN (2006) Cryptic species within the cosmopolitan desiccation-tolerant moss Grimmia laevigata. Proc Natl Acad Sci 103(3):637–642

    Article  CAS  Google Scholar 

  • Fowler D, Skiba U, Nemitz E, Choubedar F, Branford DE, Donovan R, Rowland P (2004) Measuring aerosol and heavy metal deposition on urban woodland and grass using inventories of 210 Pb and metal concentrations in soil. In: Biogeochemical investigations of terrestrial, freshwater, and wetland ecosystems across the globe. Springer, Dordrecht, pp 483–499

    Chapter  Google Scholar 

  • Garvey DM (1975) Testing of cloud seeding materials at the cloud simulation and aerosol laboratory, 1971–1973. J Appl Meteorol 14(5):883–890

    Article  CAS  Google Scholar 

  • Gautam R, Hsu NC, Kafatos M, Tsay SC (2007) Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J Geophys Res Atmos 112(D5)

    Google Scholar 

  • George JJ (1951) Fog. In: Malone TF (ed) Compendium of meteorology. American Meteorological Society, Boston, pp 1179–1189

    Chapter  Google Scholar 

  • GFDRR U. EU (2014) Planning and implementation of post-Sidr housing recovery: practice, lessons and future implications: recovery framework case study

    Google Scholar 

  • Ghude SD, Bhat GS, Prabhakaran T, Jenamani RK, Chate DM, Safai PD, Karipot AK, Konwar M, Pithani P, Sinha V, Rao PS (2017) Winter fog experiment over the Indo-Gangetic plains of India. Curr Sci 112(4):00113891

    Article  Google Scholar 

  • Giordano S, Sorbo S, Adamo P, Basile A, Spagnuolo V, Cobianchi RC (2004) Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol 170(1):1–14

    Article  Google Scholar 

  • Gromke C, Jamarkattel N, Ruck B (2016) Influence of roadside hedgerows on air quality in urban street canyons. Atmos Environ 139:75–86

    Article  CAS  Google Scholar 

  • Grote R, Samson R, Alonso R, Amorim JH, Cariñanos P, Churkina G, Fares S, Thiec DL, Niinemets Ü, Mikkelsen TN, Paoletti E (2016) Functional traits of urban trees: air pollution mitigation potential. Front Ecol Environ 14(10):543–550

    Article  Google Scholar 

  • Guo X, Zheng G (2009) Advances in weather modification from 1997 to 2007 in China. Adv Atmos Sci 26(2):240–252

    Article  Google Scholar 

  • Guo X, Fu D, Li X, Hu Z, Lei H, Xiao H, Hong Y (2015) Advances in cloud physics and weather modification in China. Adv Atmos Sci 32(2):230–249

    Article  Google Scholar 

  • Gupta V, Dobhal DP, Vaideswaran SC (2013) August 2012 cloudburst and subsequent flash flood in the Asi Ganga, a tributary of the Bhagirathi river, Garhwal Himalaya, India. Curr Sci 25:249–253

    Google Scholar 

  • Guttikunda SK, Goel R (2013) Health impacts of particulate pollution in a megacity—Delhi, India. Environ Dev 6:8–20

    Article  Google Scholar 

  • Hadba L, Mendonça P, Silva LT (2017) Green walls an efficient solution for hygrothermal, noise and air pollution control in the buildings. In Architecture media politics and society conference-living and sustainability: an environmental critique of design and building practices, local and globally, vol 1

    Google Scholar 

  • Hazarika N, Daimari R, Nayaka S, Hoque RR (2011) What do epiphytic lichens of Guwahati city indicate? Curr Sci 101(7):824

    Google Scholar 

  • Helln H, Tykk T, Hakola H (2012) Importance of monoterpenes and isoprene in urban air in northern Europe. Atmos Environ 59:5966

    Google Scholar 

  • Henderson JV, Venables AJ, Regan T, Samsonov I (2016) Building functional cities. Science 352(6288):946–947

    Article  CAS  Google Scholar 

  • Hewitt CN, Ashworth K, MacKenzie AR (2020) Using green infrastructure to improve urban air quality (GI4AQ). Ambio 1:62–73

    Article  Google Scholar 

  • Hoque RR, Deka P (2010) Aerosol and CO emissions during meji burning. Curr Sci (Bangalore) 10:1270

    Google Scholar 

  • Hsu SC, Gong GC, Shiah FK, Hung CC, Kao SJ, Zhang R, Chen WN, Chen CC, Chou CK, Lin YC, Lin FJ (2014) Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning. Atmos Chem Phys Discuss 14(15):21433–21472

    Google Scholar 

  • Hutt R (2017) China is about to get its first vertical forest. World Economic Forum. https://www.weforum.org/agenda/2017/05/china-is-about-to-get-its-first-vertical-forest/. Accessed 26 Sept 2020

  • Illiyas FT, Mohan K, Mani SK, Pradeepkumar AP (2014) Lightning risk in India: challenges in disaster compensation. Econ Polit Wkly 49(23):23–27

    Google Scholar 

  • International Energy Agency (IEA) (2011) World Energy Outlook, Energy for all, financing access for the poor. Paris Int. Energy Agency

    Google Scholar 

  • ISSA Design Technical Bulletins (2005) International Slurry Surfacing Association

    Google Scholar 

  • IUCN (2012) The IUCN Programme 2013–2016, adopted by the IUCN World Conservation Congress, September 2012. International Union for Conservation of Nature, Gland

    Google Scholar 

  • Jain M, Saxena P, Sharma S, Sonwani S (2021) Investigation of forest fire activity changes over the central India domain using satellite observations during 2001–2020. GeoHealth 5:e2021GH000528

    Article  Google Scholar 

  • Jenamani RK (2012) Development of intensity based fog climatological information system (daily and hourly) at IGI airport, New Delhi for use in fog forecasting and aviation. Mausam 63(1):89–112

    Article  Google Scholar 

  • Jerrett M, Burnett RT, Pope CA III, Ito K, Thurston G, Krewski D, Thun M (2009) Long-term ozone exposure and mortality. N Engl J Med 360(11):1085–1095

    Article  CAS  Google Scholar 

  • Kedia S (2017) Delhi is gasping for air—six reasons why the national capital is becoming a ‘gas chamber’. https://www.yourstory.com/2017/11/delhi-air-pollution-six-reasons. Accessed 12 Sept 2020

  • Kelly FJ, Kelly J (2009) London air quality: a real world experiment in progress. Biomarkers 14(Suppl 1):5–11

    Article  CAS  Google Scholar 

  • Köhler, M. (2008). Green facades—a view back and some visions. Urban Ecosystems, 11(4), 423–436

    Google Scholar 

  • Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, Turner MC, Pope CA III, Thurston G, Calle EE, Thun MJ (2009) Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Health Effects Institute, Boston

    Google Scholar 

  • Krzyzanowski M, Apte JS, Bonjour SP, Brauer M, Cohen AJ, Prüss-Ustun AM (2014) Air pollution in the mega-cities. Curr Environ Health Rep 1(3):185–191

    Article  CAS  Google Scholar 

  • Kulshrestha U, Saxena P (eds) (2016) Plant responses to air pollution. Springer, Singapore, pp 1–195

    Book  Google Scholar 

  • Kumar P, Gulia S, Harrison RM, Khare M (2017) The influence of odd–even car trial on fine and coarse particles in Delhi. Environ Pollut 225:20–30

    Article  CAS  Google Scholar 

  • Kumar A, Gupta AK, Bhambri R, Verma A, Tiwari SK, Asthana AK (2018) Assessment and review of hydrometeorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya). Pol Sci 18:5–20

    Google Scholar 

  • Lal PN, Mitchell T, Aldunce P, Auld H, Mechler R, Miyan A, Romano LE, Zakaria S (2012) National systems for managing the risks from climate extremes and disasters. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge and New York, pp 339–392

    Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164(4):1556–1570

    Article  CAS  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee MA (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260

    Article  Google Scholar 

  • Liu Y, Harris DJ (2008) Effects of shelterbelt trees on reducing heating-energy consumption of office buildings in Scotland. Appl Energy 85(2–3):115–127

    Article  Google Scholar 

  • Luckin B (2003) ‘The heart and home of horror’: the great London fogs of the late nineteenth century. Soc Hist 28(1):31–48

    Article  Google Scholar 

  • Mannucci PM, Franchini M (2017) Health effects of ambient air pollution in developing countries. Int J Environ Res Public Health 9:1048

    Article  CAS  Google Scholar 

  • Marlier ME, Jina AS, Kinney PL, DeFries RS (2016) Extreme air pollution in global megacities. Curr Clim Chang Rep 2(1):15–27

    Article  Google Scholar 

  • Marrapu P, Cheng Y, Beig G, Sahu S, Srinivas R, Carmichael GR (2014) Air quality in Delhi during the Commonwealth Games. Atmos Chem Phys 14(19):10619–10630

    Article  CAS  Google Scholar 

  • Masiol M, Hopke PK, Felton HD, Frank BP, Rattigan OV, Wurth MJ, LaDuke GH (2017) Source apportionment of PM2. 5 chemically speciated mass and particle number concentrations in New York City. Atmos Environ 148:215–229

    Article  CAS  Google Scholar 

  • Middleton N, Kang U (2017) Sand and dust storms: impact mitigation. Sustainability 9(6):1053

    Article  CAS  Google Scholar 

  • Minea G (2013) Assessment of the flash flood potential of Bâsca River Catchment (Romania) based on physiographic factors. Open Geosci 5(3):344–353

    Article  Google Scholar 

  • Monastersky R (2015) Anthropocene: the human age. Nat News 519(7542):144

    Article  CAS  Google Scholar 

  • MoRTH (2008) Annual report 2008–2009. Ministry of road transport & highways. New Delhi

    Google Scholar 

  • NIDM (2020). https://nidm.gov.in/about.asp. Accessed 4 Oct 2020

  • Niles JO, Brown S, Pretty J, Ball AS, Fay J (2002) Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands. Philos Trans A Math Phys Eng Sci 360(1797):1621–1639

    Article  Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green 4(3–4):115–123

    Article  Google Scholar 

  • Oke TR (1988) Street design and urban canopy layer climate. Energy Buildings 11(1–3):103–113

    Article  Google Scholar 

  • Oldenborgh GJ, Philip S, Kew S, Weele MV, Uhe P, Otto F, Singh R, Pai I, Cullen H, AchutaRao K (2018) Extreme heat in India and anthropogenic climate change. Nat Hazards Earth Syst Sci 18(1):365–381

    Article  Google Scholar 

  • Pacheco-Torgal F, Cabeza LF, Labrincha J, De Magalhaes AG (2014) Eco-efficient construction and building materials: life cycle assessment (LCA), eco-labelling and case studies. Woodhead Publishing

    Google Scholar 

  • Padro J (1996) Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer. Atmos Environ 30(13):2363–2369

    Article  CAS  Google Scholar 

  • Papiez MR, Potosnak MJ, Goliff WS, Guenther AB, Matsunaga SN, Stockwell WR (2009) The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada. Atmos Environ 43:4109–4123

    Article  CAS  Google Scholar 

  • Pasricha PK, Gera BS, Shastri S, Maini HK, John T, Ghosh AB, Tiwari MK, Garg SC (2003) Role of the water vapour greenhouse effect in the forecasting of fog occurrence. Bound-Layer Meteorol 107(2):469–482

    Article  Google Scholar 

  • Pommier M, McLinden CA, Deeter M (2013) Relative changes in CO emissions over megacities based on observations from space. Geophys Res Lett 40(14):3766–3771

    Article  CAS  Google Scholar 

  • Pope CA III, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360(4):376–386

    Article  CAS  Google Scholar 

  • Porter WC, Heald CL, Cooley D, Russell B (2015) Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression. Atmos Chem Phys 15(18):10349–10366

    Article  CAS  Google Scholar 

  • Raine JK, Stevenson DC (1977) Wind protection by model fences in a simulated atmospheric boundary layer. J Wind Eng Ind Aerodyn 2(2):159–180

    Article  Google Scholar 

  • Rao AM, Madhu E, Gupta K (2017) Impact of odd even scheme on transportation systems in Delhi. Transport Dev Econ 3(1):4

    Article  Google Scholar 

  • Ratti C, Di Sabatino S, Britter R (2006) Urban texture analysis with image processing techniques: winds and dispersion. Theor Appl Climatol 84(1–3):77–90

    Article  Google Scholar 

  • Read C, Parton KA (2019) The impact of the 1952 London smog event and its relevance for current wood-smoke abatement strategies in Australia. J Air Waste Manag Assoc 69(9):1049–1058

    Article  Google Scholar 

  • Redclift M (2005) Sustainable development (1987–2005): an oxymoron comes of age. Sustain Dev 13(4):212–227

    Article  Google Scholar 

  • Ritchie H, Roser M (2017) Air pollution. Our World in Data. https://ourworldindata.org/air-pollution. Accessed 23 Sept 2020

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321(5894):1309–1313

    Article  CAS  Google Scholar 

  • Ryntathiang TL, Amar DD, Kumar R, AppaRoa G (2013) Green road approach for the sustainable development in India. Eur J Sustain Dev 2(2):165–165

    Article  Google Scholar 

  • Sæbø A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427:347–354

    Article  CAS  Google Scholar 

  • Safai PD, Ghude S, Pithani P, Varpe S, Kulkarni R, Todekar K, Tiwari S, Chate DM, Prabhakaran T, Jenamani RK, Rajeevan MN (2019) Two-way Relationship between aerosols and fog: a case study at IGI airport, New Delhi. Aerosol Air Qual Res 19(1):71–79

    Article  CAS  Google Scholar 

  • Sarkar AN (2013) Promoting eco-innovations to leverage sustainable development of eco-industry and green growth. Eur J Sustain Dev 2(1):171–171

    Google Scholar 

  • Sawlani R, Agnihotri R, Sharma C, Patra PK, Dimri AP, Ram K, Verma RL (2019) The severe Delhi SMOG of 2016: a case of delayed crop residue burning, coincident firecracker emissions, and atypical meteorology. Atmos Pollut Res 10(3):868–879

    Article  CAS  Google Scholar 

  • Saxena P, Ghosh C (2013) Ornamental plants as sinks and bioindicators. Environ Technol 34(23):3059–3067

    Article  CAS  Google Scholar 

  • Saxena P, Sonwani S (2019a) Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 1–157

    Google Scholar 

  • Saxena P, Sonwani S (2019b) Policy regulations and future recommendations. In: Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 127–157

    Chapter  Google Scholar 

  • Saxena P, Srivastava A (eds) (2020) Air pollution and environmental health. Springer-Nature, Singapore, pp 1–253

    Google Scholar 

  • Saxena P, Srivastava A, Tyagi M, Kaur S (2019) Impact of tropospheric ozone on plant metabolism—a review. Pollut Res 38(1):175–180

    CAS  Google Scholar 

  • Saxena P, Sonwani S, Srivastava A, Jain M, Srivastava A, Bharti A, Rangra D, Mongia N, Tejan S, Bhardwaj S (2021) Impact of crop residue burning in Haryana on the air quality of Delhi, India. Heliyon 7(5):e06973

    Article  Google Scholar 

  • Sehgal M, Gautam SK (2016) Odd even story of Delhi traffic and air pollution. Int J Environ Stud 73(2):170–172

    Article  Google Scholar 

  • Sehmel GA (1980) Particle and gas dry deposition: a review. Atmos Environ 14(9):983–1011

    Article  Google Scholar 

  • Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gumy S (2020) Half the world’s population are exposed to increasing air pollution. npj Clim Atmos Sci 3(1):1–5

    Article  CAS  Google Scholar 

  • Sharma AR, Kharol SK, Badarinath KV, Singh D (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India. Ann Geophys 28(2):09927689

    Google Scholar 

  • Shenfeld L (1970) Meteorological aspects of air pollution control. Atmosphere 8(1):3–13

    Article  Google Scholar 

  • Sindhwani R, Goyal P (2014) Assessment of traffic-generated gaseous and particulate matter emissions and trends over Delhi (2000–2010). Atmos Pollut Res 5(3):438–446

    Article  CAS  Google Scholar 

  • Singh S (2017) These 20 plants can guzzle pollutants, finds DU study Thursday New Delhi. The Pioneer. https://www.dailypioneer.com/2017/page1/these-20-plants-can-guzzle-pollutants-finds-du-study.html. Accessed 19 Sept 2020

  • Singh RK, Srivastava MK, Mehrotra BJ, Murari V, Sharma SK, Mandal TK, Singh AK, Singh RS, Banerjee T, Tiwari S (2017) Biomass-burning during Holika at Varanasi (25.3 N, 83.0 E): optical observations and aerosol radiative forcing. In: 2017 AGU fall meeting AGU

    Google Scholar 

  • Smith J (2012) Urban air quality. The Woodland Trust, Grantham

    Google Scholar 

  • Sonwani S, Saxena P, Khillare PS (2022) Profile of atmospheric particulate PAHs near busy roadway in tropical megacity, India. Inhal Toxicol 34(1–2):39–50

    Article  CAS  Google Scholar 

  • Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 36(8):614–621

    Article  CAS  Google Scholar 

  • Sternberg T, Viles H, Cathersides A, Edwards M (2010) Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Sci Total Environ 409(1):162–168

    Article  CAS  Google Scholar 

  • Tai AP, Martin MV, Heald CL (2014) Threat to future global food security from climate change and ozone air pollution. Nat Clim Chang 4(9):817–821

    Article  CAS  Google Scholar 

  • Tessier L, Boisvert J (1999) Performance of terrestrial bryophytes as biomonitors of atmospheric pollution. A review. Toxicol Environ Chem 68(1–2):179–220

    Article  CAS  Google Scholar 

  • Thönnessen M (2002) Elementdynamik in fassadenbegrünendem Wilden Wein (Parthenocissus tricuspidata). Kölner Geographische Arbeiten, p 78

    Google Scholar 

  • Tiwari S, Bisht DS, Srivastava AK, Shivashankara GP, Kumar R (2013) Interannual and intraseasonal variability in fine mode particles over Delhi: influence of meteorology. Adv Meteorol 2013:740453

    Article  Google Scholar 

  • Tiwari S, Thomas A, Rao P, Chate DM, Soni VK, Singh S, Ghude SD, Singh D, Hopke PK (2018) Pollution concentrations in Delhi India during winter 2015–16: a case study of an odd-even vehicle strategy. Atmos Pollut Res 9(6):1137–1145

    Article  CAS  Google Scholar 

  • Tiwary A, Morvan HP, Colls JJ (2006) Modelling the size-dependent collection efficiency of hedgerows for ambient aerosols. J Aerosol Sci 37(8):990–1015

    Article  CAS  Google Scholar 

  • Tzoulas K, Galan J, Venn S, Dennis M, Pedroli B, Mishra H, Haase D, Pauleit S, Niemelä J, James P (2020) A conceptual model of the social–ecological system of nature-based solutions in urban environments. Ambio 50(2):335–345

    Article  Google Scholar 

  • UNDP (United Nations, Department of Economic and Social Affairs, Population Division) (2014) World urbanization prospects: the 2014 revision. CD-ROM edition

    Google Scholar 

  • UNDP (United Nations, Department of Economic and Social Affairs, Population Division) (2015) World urbanization prospects: the 2014 revision,(ST/ESA/SER. A/366). United Nations Population Division

    Google Scholar 

  • Watson A (1985) The control of blowing sand and mobile desert dunes. The control of wind blown sand and moving dunes: a review of the methods of sand control in deserts, with observations from Saudi Arabia. Q J Eng Geol Hydrogeol 18:237–252

    Article  Google Scholar 

  • Weerakkody U, Dover JW, Mitchell P, Reiling K (2018) Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For Urban Green 30:98–107

    Article  Google Scholar 

  • West JJ, Smith SJ, Silva RA, Naik V, Zhang Y, Adelman Z, Fry MM, Anenberg S, Horowitz LW, Lamarque JF (2013) Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat Clim Chang 3(10):885–889

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2014) Ambient (outdoor) air pollution in cities database. http://www.who.int/phe/health_topics/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raza R. Hoque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S., Hoque, R.R. (2022). Ecological and Natural-Based Solutions as Green Growth Strategies for Disaster and Emergency Management of Air Pollution Extremes. In: Saxena, P., Shukla, A., Gupta, A.K. (eds) Extremes in Atmospheric Processes and Phenomenon: Assessment, Impacts and Mitigation . Disaster Resilience and Green Growth. Springer, Singapore. https://doi.org/10.1007/978-981-16-7727-4_16

Download citation

Publish with us

Policies and ethics