Skip to main content

A Comparative Analysis of LQR and SMC for Quanser AERO

  • 178 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 822)

Abstract

In this paper, mathematical modeling of multi-input multi-output Quanser AERO system is obtained using Euler–Lagrange equation. Model obtained is nonlinear, and there exits cross-coupling. This nonlinearity and cross-coupling are challenging tasks for designing the controller for the Quanser AERO system. LQR controller has been widely used in literature, but it is not able to meet the desired performance specifications. To overcome this, SMC has been implemented in addition to LQR, and their performance has been compared.

Keywords

  • Quanser AERO
  • Linear quadratic regulator (LQR)
  • Sliding mode control (SMC)
  • Multi-input multi-output (MIMO)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-7664-2_37
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-7664-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahmad SM, Chipperfield AJ, Tokhi O (2000) Dynamic modeling and optimal control of a twin rotor MIMO system. In: Proceedings of the IEEE 2000 national aerospace and electronics conference. NAECON 2000. Engineering Tomorrow (Cat. No. 00CH37093), pp 391–398

    Google Scholar 

  2. Rahideh A, Shaheed MH, Huijberts HJC (2008) Dynamic modelling of a TRMS using analytical and empirical approaches. Control Eng Practice 16(3):241–259

    CrossRef  Google Scholar 

  3. Luo B, Wu HN, Huang T (2017) Optimal output regulation for model-free Quanser helicopter with multistep Q-learning. IEEE Trans Ind Electron 65(6):4953–4961

    CrossRef  Google Scholar 

  4. Quanser (2006) Quanser 2-DOF helicopter user and control manual. Quanser Inc

    Google Scholar 

  5. Pratap B, Agrawal A, Purwar S (2012) Optimal control of twin rotor MIMO system using output feedback. In: 2012 2nd international conference on power, control and embedded systems, pp 1–6

    Google Scholar 

  6. Vonckx K, Janiak G, Miah MS (2019) Optimal tracking control experiments for 2-DOF helicopter: an open-implementation approach. In: 2019 7th international conference on mechatronics engineering (ICOM), pp 1–6

    Google Scholar 

  7. Inc Quanser (2016) (2016) Quanser AERO laboratory guide. Technical Report, Quanser

    Google Scholar 

  8. https://www.quanser.com/products/quanser-aero/. Last accessed 30th Dec 2019

  9. Spong MW, Hutchinson S, Vidyasagar M (2006) Forward and inverse kinematics. Robot modelling and control, pp 74–118

    Google Scholar 

  10. Shieh LS, Dib HM, Yates RE (1988) Sequential design of linear quadratic state regulators via the optimal root-locus techniques. IEE Proc D (Control Theory Appl) 135(4):289–294

    MathSciNet  CrossRef  Google Scholar 

  11. Khalil H (2000) Nonlinear systems, 1st edn. Prentice Hall

    Google Scholar 

  12. Kadmiry B, Driankov D (2004) A fuzzy gain-scheduler for the attitude control of an unmanned helicopter. IEEE Trans Fuzzy Syst 12(4):502–515

    CrossRef  Google Scholar 

  13. Ghosh S, Gude S (2012) A genetic algorithm tuned optimal controller for glucose regulation in type 1 diabetic subjects. Int J Numer Methods Biomed Eng 28(8):877–889

    MathSciNet  CrossRef  Google Scholar 

  14. Ogata K (2010) Modern control engineering. Prentice hall

    Google Scholar 

  15. Esfandiari F, Khalil HK (1991) Stability analysis of a continuous implementation of variable structure control. IEEE Trans Autom Control 36(5):616–620

    MathSciNet  CrossRef  Google Scholar 

  16. Huang YJ, Kuo TC, Way HK (2003) Robust vertical takeoff and landing aircraft control via integral sliding mode. IEEE Proc-Control Theory Appl 150(4):383–388

    CrossRef  Google Scholar 

  17. Cao WJ, Xu JX (2004) Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Trans Autom Control 49(8):1355–1360

    MathSciNet  CrossRef  Google Scholar 

  18. Levant A (2010) Chattering analysis. IEEE Trans Autom Control 55(6):1380–1389

    MathSciNet  CrossRef  Google Scholar 

  19. Eltayeb A, Rahmat MF, Basri MAM, Mahmoud MS (2020) An improved design of integral sliding mode controller for chattering attenuation and trajectory tracking of the quadrotor UAV. Arab J Sci Eng 45:6949–6961

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lillie Dewan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Dewan, L. (2022). A Comparative Analysis of LQR and SMC for Quanser AERO. In: Suhag, S., Mahanta, C., Mishra, S. (eds) Control and Measurement Applications for Smart Grid. Lecture Notes in Electrical Engineering, vol 822. Springer, Singapore. https://doi.org/10.1007/978-981-16-7664-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7664-2_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7663-5

  • Online ISBN: 978-981-16-7664-2

  • eBook Packages: EnergyEnergy (R0)