Skip to main content

Effect of Sample Volume in Escherichia Coli Detection in Water Using Double-Decker Resonator

  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 348))

  • 450 Accesses

Abstract

Rapid pathogenic detection of Escherichia coli (E. coli) bacteria is vitally important in medical and pharmaceutical companies, environmental monitoring, and biomedical research. In this work, a double-decker ring resonator (DDRR) with resonant mode numbers of 9 and 11 is fabricated from a nano-core slab waveguide from Si3N4 placed on a coring 7980 silica substrate is used for detection of E. coli bacterium in water. The sensor’s performance is studied for four waveguide layouts, and the effect of evanescent field penetration depth on volume sample is studied. Results simulated using the signal flow graph method and MATLAB software. The maximum sensitivity of the DDRR sensor is measured to be 605 nm/RIU, which corresponds to high-resolution sensing of 1.82 × 10–6 RIU. Results show that increasing the height of the superstrate sensing window waveguide to four times the height of the core layer contributes to improve the sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, V.M., et al.: Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat. Med. 22(5), 563–567 (2016)

    Article  Google Scholar 

  2. Kalate Seyfari, A., Zareian, A.H., Bahadoran, M.: Design and simulation of four stage antiresonant reflecting plasmonic microring biosensor for detection of Ecoli Bacterium-O157 in water. J. Res. Many-body Syst. 10(4), 47–62 (2021)

    Google Scholar 

  3. Janik, M., et al.: Live E. coli bacteria label-free sensing using a microcavity in-line Mach-Zehnder interferometer. Sci. Rep. 8(1), 1–8 (2018)

    Google Scholar 

  4. Bej, A.K., et al.: Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl. Environ. Microbiol. 57(4), 1013–1017 (1991)

    Google Scholar 

  5. Zhu, J., Hill, J.E.: Detection of Escherichia coli via VOC profiling using secondary electrospray ionization-mass spectrometry (SESI-MS). Food Microbiol. 34(2), 412–417 (2013)

    Article  Google Scholar 

  6. Baeumner, A.J., et al.: RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens. Bioelectron. 18(4), 405–413 (2003)

    Article  Google Scholar 

  7. Frahm, E., Obst, U.: Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples. J. Microbiol. Methods 52(1), 123–131 (2003)

    Google Scholar 

  8. Min, J., Baeumner, A.J.: Highly sensitive and specific detection of viable Escherichia coli in drinking water. Anal. Biochem. 303(2), 186–193 (2002)

    Article  Google Scholar 

  9. Lyons, E., et al.: Using genomic sequencing for classical genetics in E. coli K12. PloS one 6(2), e16717 (2011)

    Google Scholar 

  10. Yang, D., et al.: Reproducible E. coli detection based on label-free SERS and mapping. Talanta 146, 457–463 (2016)

    Google Scholar 

  11. Daly, P., Collier, T., Doyle, S.: PCR-ELISA detection of Escherichia coli in milk. Lett. Appl. Microbiol. 34(3), 222–226 (2002)

    Article  Google Scholar 

  12. Johnson, R.P., et al.: Detection of Escherichia coli O157: H7 in meat by an enzyme-linked immunosorbent assay. EHEC-Tek. Appl. Environ. Microbiol. 61(1), 386–388 (1995)

    Article  Google Scholar 

  13. Cinel, N.A., Bütün, S., Özbay, E.: Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Opt. Express 20(3), 2587–2597 (2012)

    Article  Google Scholar 

  14. Liu, X., et al.: Amperometric glucose biosensor with remarkable acid stability based on glucose oxidase entrapped in colloidal gold-modified carbon ionic liquid electrode. Biosens. Bioelectron. 25(12), 2675–2679 (2010)

    Article  Google Scholar 

  15. Llandro, J., et al.: Magnetic biosensor technologies for medical applications: a review. Med. Biol. Eng. Compu. 48(10), 977–998 (2010)

    Article  Google Scholar 

  16. Sanati, P., et al.: Detection of Escherichia coli K12 in water using slot waveguide in cascaded ring resonator. Silicon 1–7 (2021)

    Google Scholar 

  17. Bahadoran, M., et al.: Detection of Salmonella bacterium in drinking water using microring resonator. Artif. Cells Nanomed Biotech. 44(1), 315–321 (2016)

    Article  Google Scholar 

  18. Sanati, P., et al.: Label-free biosensor array comprised of Vernier microring resonator and 3 × 3 optical coupler. Eur. Phys. J. Plus 135(11), 869 (2020)

    Article  Google Scholar 

  19. Zhao, W., Xu, J.J., Chen, H.Y.: Electrochemical biosensors based on layer‐by‐layer assemblies. Electroanalysis: Int. J. Devoted Fundam. Pract. Aspects Electroanalysis 18(18), 1737–1748 (2006)

    Google Scholar 

  20. Gao, J., et al.: Vapor sensors based on optical interferometry from oxidized microporous silicon films. Langmuir 18(6), 2229–2233 (2002)

    Article  Google Scholar 

  21. Schmitt, K., et al.: Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens. Bioelectron. 22(11), 2591–2597 (2007)

    Article  Google Scholar 

  22. Liu, X., et al.: A label-free electrochemical biosensor based on ligand-receptor interaction. In: 2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 341–344. IEEE (2018)

    Google Scholar 

  23. Seyfari, A.K., Bahadoran, M., Aghili, A.: Ultra-sensitive pressure sensor using double stage racetrack silicon micro resonator. Opt. Quant. Electron. 52(9), 408 (2020)

    Article  Google Scholar 

  24. Aziz, M., et al.: Theoretical study on slow-light generated by integrated microring resonator with wide bandwidth and high gain. Jurnal Teknologi 78(3), 293–300 (2016)

    Article  Google Scholar 

  25. Amiri, I., Afroozeh, A., Bahadoran, M.: Simulation and analysis of multisoliton generation using a PANDA ring resonator system. Chin. Phys. Lett. 28(10), 104205 (2011)

    Google Scholar 

  26. Bahadoran, M., et al.: Realizing unique bifurcation model in a cascaded microring feedback circuit. Opt. Quant. Electron. 52(216), 1–14 (2020)

    Google Scholar 

  27. Amiri, I., et al.: Dual wavelength optical duobinary modulation using GaAs–AlGaAs microring resonator. Results Phys. 11, 1087–1093 (2018)

    Article  Google Scholar 

  28. Claes, T., Bogaerts, W., Bienstman, P.: Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 18(22), 22747–22761 (2010)

    Article  Google Scholar 

  29. Bahadoran, M., et al.: Modeling and analysis of a microresonating biosensor for detection of Salmonella Bacteria in human blood. Sensors 14(7), 12885–12899 (2014)

    Article  Google Scholar 

  30. Sirawattananon, C., et al.: Analytical vernier effects of a PANDA ring resonator for microforce sensing application. IEEE Trans. Nanotechnol. 11(4), 707–712 (2012)

    Article  Google Scholar 

  31. Seyfari, A.K., Bahadoran, M., Yupapin, P.: Design and modeling of double Panda-microring resonator as multi-band optical filter. Nano Commun. Netw. 29, 100352 (2021)

    Google Scholar 

  32. Bahadoran, M., et al.: Nano force sensing using symmetric double stage micro resonator. Measurement 58, 215–220 (2014)

    Article  Google Scholar 

  33. Bahadoran, M., et al.: Bifurcation behaviors generated by Panda-ring control circuit. Microw. Opt. Technol. Lett. 61(7), 1783–1787 (2019)

    Article  Google Scholar 

  34. Jin, L., Li, M., He, J.-J.: Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect. Opt. Commun. 284(1), 156–159 (2011)

    Article  Google Scholar 

  35. Bahadoran, M., Ali, J., Yupapin, P.: Ultrafast all-optical switching using signal flow graph for PANDA resonator. Appl. Opt. 52(12), 2866–2873 (2013)

    Article  Google Scholar 

  36. Bahadoran, M., Ali, J., Yupapin, P.: Graphical approach for nonlinear optical switching by PANDA vernier filter. IEEE Photonics Technol. Lett. 25(15), 1470–1473 (2013)

    Article  Google Scholar 

  37. Bahadoran, M., et al.: Novel Approach to determine the young’s modulus in silicon-on-insulator waveguide using microring resonator. Dig. J. Nanomater. Biostruct. 9(3), 1095–1104 (2014)

    Google Scholar 

  38. Aziz, M., et al.: Light pulse in a modified add-drop optical filter for optical tweezers generation. J. Nonlinear Opt. Phys. Mater. 21(04), (2012)

    Google Scholar 

  39. Boeck, R., et al.: Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement. Opt. Express 18(24), 25151–25157 (2010)

    Article  Google Scholar 

  40. Bahadoran, M., Yupapin, P., Amiri, I.S.: Optimum light transmission via microring resonator under a lossy-coupler critical coupling condition. Microw. Opt. Technol. Lett. 63(2), 653–661 (2021)

    Article  Google Scholar 

  41. Shafiee, A., Bahadoran, M., Yupapin, P.: Analytical microring stereo system using coupled mode theory and application. Appl. Opt. 58(30), 8167–8173 (2019)

    Article  Google Scholar 

  42. Bahadoran, M., Yupapin, P.: Butterfly-like phase shift: a novel gauge for critical coupling of add–drop resonator. J. Theoret. Appl. Phys. 12(2), 127–134 (2018)

    Article  Google Scholar 

  43. Nawi, I., et al.: A theoretical model of all-optical switching induced by a soliton pulse in nano-waveguide ring resonator. Journal of Physics: Conference Series, vol. 431, pp. 012029. IOP Publishing (2013)

    Google Scholar 

  44. Bahadoran, M., et al.: Slow light generation using microring resonators for optical buffer application. Opt. Eng. 51(4), 044601–044608 (2012)

    Article  Google Scholar 

  45. Dai, D., et al.: Low-loss Si 3 N 4 arrayed-waveguide grating (de) multiplexer using nano-core optical waveguides. Opt. Express 19(15), 14130–14136 (2011)

    Article  Google Scholar 

  46. Akbari, E., et al.: Escherichia coli bacteria detection by using graphene-based biosensor. IET Nanobiotechnol. 9(5), 273–279 (2015)

    Article  Google Scholar 

  47. Zibaii, M.I., et al.: Measuring bacterial growth by refractive index tapered fiber optic biosensor. J. Photochem. Photobiol. B 101(3), 313–320 (2010)

    Article  Google Scholar 

  48. Balaev, A.E., Dvoretski, K.N., Doubrovski, V.A.: Determination of refractive index of rod-shaped bacteria from spectral extinction measurements. In: Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, vol. 5068, pp. 375–380. International Society for Optics and Photonics (2003)

    Google Scholar 

  49. Bahadoran, M., Amiri, I.S.: Double critical coupled ring resonator-based add–drop filters. J Theor. Appl. Phys. 13, 213–220 (2019)

    Article  Google Scholar 

  50. Yariv, A.: Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14(4), 483–485 (2002)

    Article  Google Scholar 

  51. Yariv, A.: Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36(4), 321–322 (2000)

    Article  Google Scholar 

  52. Roy, S.K., Sharan, P.: Design of ultra-high sensitive biosensor to detect E. Coli in water. Int. J. Inf. Technol. 12(3), 1–6 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research facilities of Shiraz University of Medical Sciences, Iran, and Universiti Teknologi MARA, Cawangan Johor, Malaysia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiful Najmee Mohamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanati, P., Bahadoran, M., Mohamad, S.N. (2022). Effect of Sample Volume in Escherichia Coli Detection in Water Using Double-Decker Resonator. In: Kaiser, M.S., Ray, K., Bandyopadhyay, A., Jacob, K., Long, K.S. (eds) Proceedings of the Third International Conference on Trends in Computational and Cognitive Engineering. Lecture Notes in Networks and Systems, vol 348. Springer, Singapore. https://doi.org/10.1007/978-981-16-7597-3_13

Download citation

Publish with us

Policies and ethics