Skip to main content

Neuromorphic Data Converters Using Memristors

  • Chapter
  • First Online:
Emerging Computing: From Devices to Systems

Abstract

Data converters are ubiquitous in data-abundant mixed-signal systems, where they are heterogeneously distributed across the analog–digital interface. Unfortunately, conventional CMOS data converters trade off speed, power, and accuracy. Therefore, they are exhaustively customized for special purpose applications. Furthermore, intrinsic real-time and post-silicon variations dramatically degrade their performance along with the technology downscaling. Using machine learning techniques and neuromorphic computing, these issues can be overcome. This chapter presents four-bit neuromorphic analog-to-digital (ADC) and digital-to-analog (DAC) converters using memristors that are trained using the stochastic gradient descent algorithm in real-time to autonomously adapt to different design and application specifications, including multiple full-scale voltages, sampling frequencies, number of resolution bits, and quantization scale. Theoretical analysis, as well as simulation results, show the collective resilient properties of our converters in application reconfiguration, logarithmic quantization, mismatches calibration, noise tolerance, and power optimization. Furthermore, large-scale challenges are discussed and solved by leveraging mixed-signal architectures, such as pipelined ADC. These ADC and DAC designs break through the tremendous speed-power-accuracy tradeoff in conventional data converters and enable a general-purpose application architecture with valuable results for neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic resonance. J. Phys. a: Math. Gen. 14(11), L453–L457 (1981)

    Google Scholar 

  • S. Cantarano, G.V. Pallottino, Logarithmic analog-to-digital converters: a survey. IMS 22(3), 201–213 (1973)

    Google Scholar 

  • B. Chen et al., Physical mechanisms of endurance degradation in TMO-RRAM, in IEEE International Electron Devices Meeting (IEDM), December 2011, pp. 12.3.1–12.3.4

    Google Scholar 

  • Y. Chiu, B. Nikoli, P.R. Gray, Scaling of analog-to-digital converters into ultra-deep-submicron CMOS, in Proceedings of the IEEE on Custom Integrated Circuits Conference, September 2005, pp. 368–375

    Google Scholar 

  • L. Danial, S. Kvatinsky, Real time trainable data converter for general purpose applications, in IEEE/ACM International Symposium on Nanoscale Architectures, July 2018

    Google Scholar 

  • L. Danial, N. Wainstein, S. Kraus, S. Kvatinsky, DIDACTIC: a data-intelligent digital-to-analog converter with a trainable integrated circuit using memristors. IEEE J. Emerg. Select. Top. Circuits Syst. 8(1), 146–158 (2018a)

    Google Scholar 

  • L. Danial, N. Wainstein, S. Kraus, S. Kvatinsky, Breaking through the speed-power-accuracy tradeoff in ADCs using a memristive neuromorphic architecture. IEEE Trans. Emerg. Top. Comput. Intell. 2(5), 396–409 (2018b)

    Google Scholar 

  • T. Dietterich, Tom, Overfitting and undercomputing in machine learning. ACM Comput. Surv. 27(3), 326–327 (1995)

    Google Scholar 

  • L. Gao et al., Digital-to-analog and analog-to-digital conversion with metal oxide memristors for ultra-low power computing, in Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures, NANOARCH, July 2013, pp. 19–22

    Google Scholar 

  • A.J. Gines, E.J. Peralias, A. Rueda, A survey on digital background calibration of ADCs, in European Conference on Circuit Theory and Design, August 2009, pp. 101–104

    Google Scholar 

  • R.M. Gray, Quantization noise spectra. IEEE Trans. Inf. Theory 36(6), 1220–1244 (1990)

    Google Scholar 

  • S. Greshnikov, E. Rosenthal, D. Soudry, S. Kvatinsky, A fully analog memristor-based multilayer neural network with online backpropagation training, in Proceeding of the IEEE International Conference on Circuits and Systems, May 2016, pp. 1394–1397

    Google Scholar 

  • B.J. Hosticka, Performance comparison of analog and digital circuits. Proc. IEEE 73(1), 25–29 (1985)

    Google Scholar 

  • M. Hu et al., Geometry variations analysis of TiO2 thin-film and spintronic memristors, in IEEE Proceedings of the 16th Asia and South Pacific Design Automation Conference, January 2011.

    Google Scholar 

  • G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38) (2013), Art. ID. 384010

    Google Scholar 

  • A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: a tutorial. IEEE Comput. 29(3), 31–44 (1996)

    Google Scholar 

  • S.H. Jo et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Google Scholar 

  • B.E. Jonsson, A survey of A/D-converter performance evolution, in Proceedings of the IEEE International Conference on Electronics, Circuits and Systems, December 2010, pp. 766–769

    Google Scholar 

  • P. Kinget, M.S.J. Steyaert, Impact of transistor mismatch on the speed-accuracy-power trade-off of analog CMOS circuits, in Proceedings of the IEEE Custom Integrated Circuits Conference, May 1996, pp. 333–336

    Google Scholar 

  • T. Kugelstadt, The operation of the SAR-ADC based on charge redistribution. Texas Instrum. Analog Appl. J. 10–12 (2000)

    Google Scholar 

  • S. Kvatinsky, M. Ramadan, E.G. Friedman, A. Kolodny, VTEAM: a general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II Express Briefs 62(8), 786–790 (2015)

    Google Scholar 

  • J. Li, S. Member, U. Moon, S. Member, background calibration techniques for multistage pipelined ADCs with digital redundancy. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process 50(9), 531–538 (2003)

    Google Scholar 

  • C. Mead, Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)

    Google Scholar 

  • B. Murmann, ADC performance survey 1997–2017 (2021), http://web.stanford.edu/~murmann/adcsurvey.html

  • Y. Nemirovsky et al., 1/f noise in advanced CMOS transistors. IEEE Instrum. Meas. Mag. 14(1), 14–22 (2011)

    Google Scholar 

  • D. Niu, Y. Chen, C. Xu, Y. Xie, Impact of process variations on emerging memristor, in Proceedings of the 47th Design Automation Conference - DAC’10, June 2010, pp. 877–882

    Google Scholar 

  • P. Nuzzo, F. De Bernardinis, P. Terreni, G. Van der Plas, Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans. Circuits Syst. I Regul. Pap. 55(6), 1441–1454 (2008)

    Google Scholar 

  • S. Pi, M. Ghadiri-Sadrabadi, J.C. Bardin, Q. Xia, Nanoscale memristive radiofrequency switches. Nat. Commun. 6(7519), 1–9 (2015)

    Google Scholar 

  • C. Po-Rong, W. Bor-Chin, H.M. Gong, A triangular connection hopfield neural network approach to analog-to-digital conversion. IEEE Trans. Instrum. Meas. 43(6), 882–888 (1994)

    Google Scholar 

  • P. Pouyan, E. Amat, A. Rubio, Reliability challenges in design of memristive memories, in Proceedings of the European Workshop on CMOS Variability (VARI), Sept. 2014, pp. 1–6

    Google Scholar 

  • M. Prezioso et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015)

    Google Scholar 

  • J. Sandrini et al., Effect of metal buffer layer and thermal annealing on HfOx-based ReRAMs, in IEEE International Conference on the Science of Electrical Engineering, November 2016, pp. 1–5

    Google Scholar 

  • T. Sepke, P. Holloway, C.G. Sodini, H.S. Lee, Noise analysis for comparator-based circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 56(3), 541–553 (2009)

    Google Scholar 

  • D.L. Shen, Y.C. Lai, T.C. Lee, A 10-bit binary-weighted DAC with digital background LMS calibration, in Proceeding of the IEEE Asian Solid-State Circuits Conference, November 2007, pp. 352–355

    Google Scholar 

  • O.M. Solomon, The use of DFT windows in signal-to-noise ratio and harmonic distortion computations, in IEEE Instrumentation and Measurement Technology Conference, May 1993, pp. 103–108

    Google Scholar 

  • D. Soudry et al., Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2408–2421 (2015)

    Google Scholar 

  • M. Steyaert, K. Uyttenhove, Speed-power-accuracy trade-off in high-speed analog-to-digital converters: now and in the future, in Analog Circuit Design (Springer, 2000), pp. 3–24

    Google Scholar 

  • A. Stotland, M. Di Ventra, Stochastic memory: memory enhancement due to noise. Phys. Rev. E 85(1), 011116 (2012)

    Google Scholar 

  • D.B. Strukov, Endurance-write-speed tradeoffs in nonvolatile memories. Appl. Phys. A 122(4), 1–4 (2016)

    Google Scholar 

  • Y. Sundarasaradula et al., A 6-bit, two-step, successive approximation logarithmic ADC for biomedical applications, in ICECS (2016), pp. 25–28

    Google Scholar 

  • D. Tank, J.J. Hopfield, Simple ‘neural’ optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33(5), 533–541 (1986)

    Google Scholar 

  • A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48), 1–7 (2011)

    Google Scholar 

  • K. Uyttenhove, M.S.J. Steyaert, Speed-power-accuracy tradeoff in high-speed CMOS ADCs. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process 49(4), 280–287 (2002)

    Google Scholar 

  • R.J. van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters (Springer Science & Business Media, 2013)

    Google Scholar 

  • N. Wainstein, S. Kvatinsky, An RF memristor model and memristive single-pole double-throw switches, in IEEE International Symposium on Circuits and Systems (2017) (in press).

    Google Scholar 

  • R.H. Walden, Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999)

    Google Scholar 

  • B. Widrow, M.A. Lehr, 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc. IEEE 78(9), 1415–1442 (1990)

    Google Scholar 

  • B. Widrow, S.D. Stearns, Adaptive signal processing, in Englewood Cliffs (Rentice-Hall, NJ, USA, 1985)

    Google Scholar 

  • L. Zhang et al., Mellow writes: extending lifetime in resistive memories through selective slow write backs, in ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), June 2016, pp. 519–531

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahar Kvatinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danial, L., Damahe, P., Agrawal, P., Dhamnani, R., Kvatinsky, S. (2023). Neuromorphic Data Converters Using Memristors. In: Aly, M.M.S., Chattopadhyay, A. (eds) Emerging Computing: From Devices to Systems. Computer Architecture and Design Methodologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-7487-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7487-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7486-0

  • Online ISBN: 978-981-16-7487-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics