Skip to main content

Quantum Computing—An Emerging Computing Paradigm

  • Chapter
  • First Online:
Emerging Computing: From Devices to Systems

Part of the book series: Computer Architecture and Design Methodologies ((CADM))

  • 1487 Accesses

Abstract

The field of quantum computing is rapidly evolving as it is gradually shifting from curiosity driven research to engineering of Noisy Intermediate Scale Quantum (NISQ) computing devices (Preskill 2018). It is therefore difficult to cover all the developments in a chapter. The intent of this chapter is to introduce quantum computing as a complementary computing machine capable of solving computationally hard problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • C.S. Adams, J.D. Pritchard, J.P. Shaffer, Rydberg atom quantum technologies. J. Phys. B: At. Mol. Opt. Phys. 53(1), 012002 (2019)

    Google Scholar 

  • A. Arkhipov, S. Aaronson, The computational complexity of linear optics. Theory Comput. 9 (2013)

    Google Scholar 

  • F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M.P. Harrigan, M.J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T.S. Humble, S.V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P.V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandra, J.R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M.Y. Niu, E. Ostby, A. Petukhov, J.C. Platt, C. Quintana, E.G. Rieffel, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy, K.J. Sung, M.D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. Jamie Yao, P. Yeh, A. Zalcman, H. Neven, J.M. Martinis, Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Google Scholar 

  • R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T.C. White, A.N. Cleland, J.M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111(8), 080502 (2013)

    Google Scholar 

  • C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  • C.H. Bennett, Time/space trade-offs for reversible computation. SIAM J. Comput. 18(4), 766–776 (1989)

    Article  MathSciNet  Google Scholar 

  • M.A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T.C. Ralph, A.G. White, Photonic Boson sampling in a tunable circuit. Science 339(6121), 794 (2013)

    Article  Google Scholar 

  • C.D. Bruzewicz, R. McConnell, J. Stuart, J.M. Sage, J. Chiaverini, Dual-species, multi-qubit logic primitives for ca+/sr+ trapped-ion crystals. NPJ Quantum Inf. 5(1), 102 (2019)

    Article  Google Scholar 

  • I.L. Chuang, L.M.K. Vandersypen, X. Zhou, D.W. Leung, S. Lloyd, Experimental realization of a quantum algorithm. Nature 393(6681), 143–146 (1998)

    Article  Google Scholar 

  • J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    Article  Google Scholar 

  • A. Crespi, R. Osellame, R. Ramponi, D.J. Brod, E.F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, F. Sciarrino, Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7(7), 545–549 (2013)

    Article  Google Scholar 

  • D. Deutsch, A. Barenco, A. Ekert, Universality in quantum computation. Proc. R. Soc. Lond. 449, 8 (1997)

    MATH  Google Scholar 

  • F. Dubin, D. Rotter, M. Mukherjee, S. Gerber, R. Blatt, Photon correlation versus interference of single-atom fluorescence in a half-cavity. Phys. Rev. Lett. 98(18) (2007a)

    Google Scholar 

  • F. Dubin, D. Rotter, M. Mukherjee, S. Gerber, R. Blatt, Single-ion two-photon source. Phys. Rev. Lett. 99 (2007b)

    Google Scholar 

  • R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6/7) (1982)

    Google Scholar 

  • E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21(3), 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  • M.H. Freedman, A. Kitaev, Z. Wang, Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227(3), 587–603 (2002)

    Article  MathSciNet  Google Scholar 

  • N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M.B. Plenio, M. Huber, C. Roos, R. Blatt, B. Lanyon, Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X 8(2), 021012 (2018)

    Google Scholar 

  • N. Gershenfeld, I.L. Chuang, Quantum computing with molecules. Sci. Am. 278(6), 66–71 (1998)

    Article  Google Scholar 

  • D. Gottesman, I.L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  Google Scholar 

  • H. Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469(4), 155–203 (2008)

    Article  MathSciNet  Google Scholar 

  • P.C. Haljan, K.A. Brickman, L. Deslauriers, P.J. Lee, C. Monroe, Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94(15), 153602 (2005)

    Google Scholar 

  • Y. He, S.K. Gorman, D. Keith, L. Kranz, J.G. Keizer, M.Y. Simmons, A two-qubit gate between phosphorus donor electrons in silicon. Nature 571(7765), 371–375 (2019)

    Article  Google Scholar 

  • A.A. Houck, J. Koch, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Life after charge noise: recent results with transmon qubits. Quantum Inf. Process. 8(2), 105–115 (2009)

    Article  Google Scholar 

  • R.W. Keyes, IBM, J. Res. Develop. 32, 24 (1988)

    Google Scholar 

  • D. Kielpinski, C. Monroe, D.J. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature 417(6890), 709–711 (2002)

    Article  Google Scholar 

  • E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  Google Scholar 

  • R. Landauer, Dissipation and noise immunity in computation and communication. Nature 335(6193), 779–784 (1988)

    Article  Google Scholar 

  • D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003)

    Article  Google Scholar 

  • B. Lekitsch, S. Weidt, A.G. Fowler, K. Mølmer, S.J. Devitt, C. Wunderlich, W.K. Hensinger, Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3(2), e1601540 (2017)

    Google Scholar 

  • D. Loss, D.P. Di Vincenzo, Quantum computation with quantum dots. Phys. Rev. A 57(1), 120–126 (1998)

    Article  Google Scholar 

  • V.E. Manucharyan, J. Koch, L.I. Glazman, M.H. Devoret, Fluxonium: single cooper-pair circuit free of charge offsets. Science 326(5949), 113 (2009)

    Article  Google Scholar 

  • M. Metcalfe, E. Boaknin, V. Manucharyan, R. Vijay, I. Siddiqi, C. Rigetti, L. Frunzio, R.J. Schoelkopf, M.H. Devoret, Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier. Phys. Rev. B 76(17), 174516 (2007)

    Google Scholar 

  • K. Mølmer, A. Sørensen, Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82(9), 1835–1838 (1999)

    Article  Google Scholar 

  • C. Monroe, J. Kim, Scaling the ion trap quantum processor. Science 339(6124), 1164 (2013)

    Article  Google Scholar 

  • M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2002)

    Google Scholar 

  • Nvidia, Nvidia launches the world’s first graphics processing unit: Geforce 256. Nvidia. 31 August 1999. Archived from the original on 12 April 2016 (1999). Accessed 28 March 2016

    Google Scholar 

  • W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62(3), 531–540 (1990)

    Article  Google Scholar 

  • E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, R. Wisnieff, Leveraging secondary storage to simulate deep 54-qubit sycamore circuits (2019), arXiv:1910.09534. October 01, 2019

  • A.D. Pfister, M. Salz, M. Hettrich, U.G. Poschinger, F. Schmidt-Kaler, A quantum repeater node with trapped ions: a realistic case example. Appl. Phys. B: Lasers Opt. 122, 89 (2016)

    Article  Google Scholar 

  • J. Preskill, Quantum computing in the NISQ era and beyond (2018), arXiv:1801.00862, January 01, 2018

  • A. Sørensen, K. Mølmer, Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82(9), 1971–1974 (1999)

    Article  Google Scholar 

  • J.B. Spring, B.J. Metcalf, P.C. Humphreys, W. Steven Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N.K. Langford, D. Kundys, J.C. Gates, B.J. Smith, P.G.R. Smith, I.A. Walmsley, Boson sampling on a photonic chip. Science 339(6121), 798 (2013)

    Google Scholar 

  • M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, P. Walther, Experimental Boson sampling. Nat. Photon. 7(7), 540–544 (2013)

    Google Scholar 

  • A.M. Turing, On computable numbers, with an application to the entscheidungsproble. A correction. Proc. Lond. Math. Soc. s2-43(1), 544–546 (1938)

    Google Scholar 

  • A.M. Turing, On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc. s2-42(1), 230–265 (1937)

    Google Scholar 

  • L.M.K. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation. Rev. Mod. Phys. 76(4), 1037–1069 (2005)

    Article  Google Scholar 

  • L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, R. Cleve, I.L. Chuang, Experimental realization of an order-finding algorithm with an NMR quantum computer. Phys. Rev. Lett. 85(25), 5452–5455 (2000)

    Article  Google Scholar 

  • L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414(6866), 883–887 (2001)

    Article  Google Scholar 

  • C.W. von Keyserlingk, S.H. Simon, B. Rosenow, Enhanced bulk-edge coulomb coupling in fractional Fabry-Perot interferometers. Phys. Rev. Lett. 115(12), 126807 (2015)

    Google Scholar 

  • J. von Neumann, First draft of a report on the EDVAC. Archived from the original (pdf) on March 14, 2013. Report on EDVAC (1945). Accessed 24 August 2011

    Google Scholar 

  • R.L. Willett, C. Nayak, K. Shtengel, L.N. Pfeiffer, K.W. West, Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-abelian anyons at \(\nu =5/2\). Phys. Rev. Lett. 111(18), 186401 (2013)

    Google Scholar 

  • D. Yum, D. De Munshi, T. Dutta, M. Mukherjee, Optical barium ion qubit. J. Opt. Soc. Am. B 34(8), 1632–1636 (2017)

    Article  Google Scholar 

  • J. Zhang, G. Pagano, P.W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A.V. Gorshkov, Z.X. Gong, C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551(7682), 601–604 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, M. (2023). Quantum Computing—An Emerging Computing Paradigm. In: Aly, M.M.S., Chattopadhyay, A. (eds) Emerging Computing: From Devices to Systems. Computer Architecture and Design Methodologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-7487-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7487-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7486-0

  • Online ISBN: 978-981-16-7487-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics