Skip to main content

Error-Tolerant Mapping for Quantum Computing

  • Chapter
  • First Online:
Emerging Computing: From Devices to Systems

Part of the book series: Computer Architecture and Design Methodologies ((CADM))

  • 1502 Accesses

Abstract

Quantum computers are built with fragile and noise/error-prone qubits. Some prominent errors include, decoherence/dephasing, gate error, readout error, leakage, and crosstalk. Furthermore, the qubits vary in terms of their quality. Some qubits are healthy whereas others prone to errors. This presents an opportunity to exploit good quality qubits to improve the computation outcome. This chapter reviews the state-of-the-art mapping techniques for error tolerance. We take quantum benchmarks as well as approximate algorithms for applications covering MaxCut, object detection and factorization to illustrate various optimization challenges and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Alam, A. Ash-Saki, S. Ghosh, Addressing temporal variations in qubit quality metrics for parameterized quantum circuits, in 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) (2019a), pp. 1–6

    Google Scholar 

  • M. Alam, A. Ash-Saki, S. Ghosh, Analysis of quantum approximate optimization algorithm under realistic noise in superconducting qubits (2019b), arXiv preprint: arXiv:1907.09631

  • M. Alam, A. Ash-Saki, S. Ghosh, An efficient circuit compilation flow for quantum approximate optimization algorithm, in 57th Annual Design Automation Conference (2020)

    Google Scholar 

  • E. Anschuetz, J. Olson, A. Aspuru-Guzik, Y. Cao, Variational quantum factoring, in International Workshop on Quantum Technology and Optimization Problems (Springer, 2019), pp. 74–85

    Google Scholar 

  • A. Ash-Saki, M. Alam, S. Ghosh, QURE: qubit re-allocation in noisy intermediate-scale quantum computers, in Proceedings of the 56th Annual Design Automation Conference (2019), pp. 1–6

    Google Scholar 

  • D. Bhattacharjee, A. Ash Saki, M. Alam, A. Chattopadhyay, S. Ghosh, MUQUT: multi-constraint quantum circuit mapping on NISQ computers, in 38th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2019 (Institute of Electrical and Electronics Engineers Inc., 2019), p. 8942132

    Google Scholar 

  • D. Bhattacharjee, A. Chattopadhyay, Depth-optimal quantum circuit placement for arbitrary topologies (2017), arXiv preprint: arXiv:1703.08540

  • J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Google Scholar 

  • K.E.C. Booth, M. Do, J.C. Beck, E. Rieffel, D. Venturelli, J. Frank, Comparing and integrating constraint programming and temporal planning for quantum circuit compilation, in Twenty-Eighth International Conference on Automated Planning and Scheduling (2018)

    Google Scholar 

  • S.B. Bravyi, A.Y. Kitaev, Quantum codes on a lattice with boundary (1998), arXiv preprint: arXiv:quant-ph/9811052

  • A. Chakrabarti, S. Sur-Kolay, A. Chaudhury, Linear nearest neighbor synthesis of reversible circuits by graph partitioning (2011), arXiv preprint: arXiv:1112.0564

  • J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  Google Scholar 

  • G.E. Crooks, Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018), arXiv preprint: arXiv:1811.08419

  • P.-L. Dallaire-Demers, N. Killoran, Quantum generative adversarial networks. Phys. Rev. A 98(1), 012324 (2018)

    Google Scholar 

  • D. Eppstein, Subgraph isomorphism in planar graphs and related problems, in Graph Algorithms And Applications I (World Scientific, 2002), pp. 283–309

    Google Scholar 

  • E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm (2014), arXiv preprint: arXiv:1411.4028

  • E. Farhi, J. Goldstone, S. Gutmann, H. Neven, Quantum algorithms for fixed qubit architectures (2017), arXiv preprint: arXiv:1703.06199

  • M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  • Google AI Blog, A Preview of Bristlecone, Google’s New Quantum Processor (2018), https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html. Accessed 30 March 2020

  • L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (1996), pp. 212–219

    Google Scholar 

  • W. Hattori, S. Yamashita, Quantum circuit optimization by changing the gate order for 2d nearest neighbor architectures, in International Conference on Reversible Computation (Springer, 2018), pp. 228–243

    Google Scholar 

  • IBM, IBM Announces Advances to IBM Quantum Systems and Ecosystem (2017), https://www-03.ibm.com/press/us/en/pressrelease/53374.wss. Accessed 30 March 2020

  • IBM, IBM Quantum Experience (2020), http://quantum-computing.ibm.com/. Accessed 30 March 2020

  • IBM Research, IBM 7 Qubit Device (2017), https://www.flickr.com/photos/ibm_research_zurich/37028171191. Accessed 30 March 2020

  • Intel, The Future of Quantum Computing is Counted in Qubits (2018), https://newsroom.intel.com/news/future-quantum-computing-counted-qubits/. Accessed 30 March 2020

  • T. Itoko, R. Raymond, T. Imamichi, A. Matsuo, A.W. Cross, Quantum circuit compilers using gate commutation rules, in Proceedings of the 24th Asia and South Pacific Design Automation Conference (2019), pp. 191–196

    Google Scholar 

  • A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.M. Chow, J.M. Gambetta, Hardware efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Google Scholar 

  • R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations (Springer, 1972), pp. 85–103

    Google Scholar 

  • E. Knill, D. Leibfried, R. Reichle, J. Britton, R.B. Blakestad, J.D. Jost, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Randomized benchmarking of quantum gates. Phys. Rev. A 77(1), 012307 (2008)

    Google Scholar 

  • J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Google Scholar 

  • J. Li, M. Alam, A. Ash-Saki, S. Ghosh, Hierarchical improvement of quantum approximate optimization algorithm for object detection, in 2020 21th International Symposium on Quality Electronic Design (ISQED) (IEEE, 2020), pp. 335–340

    Google Scholar 

  • G. Li, Y. Ding, Y. Xie, Tackling the qubit mapping problem for NISQ-era quantum devices, in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (2019), pp. 1001–1014

    Google Scholar 

  • A. Lye, R. Wille, R. Drechsler, Determining the minimal number of swap gates for multi-dimensional nearest neighbor quantum circuits, in The 20th Asia and South Pacific Design Automation Conference (IEEE, 2015), pp. 178–183

    Google Scholar 

  • D. Maslov, S.M. Falconer, M. Mosca, Quantum circuit placement. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(4), 752–763 (2008)

    Google Scholar 

  • P. Murali, J.M. Baker, A. Javadi-Abhari, F.T. Chong, M. Martonosi, Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers, in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (2019), pp. 1015–1029

    Google Scholar 

  • P. Murali, D.C. McKay, M. Martonosi, A. Javadi-Abhari, Software mitigation of crosstalk on noisy intermediate-scale quantum computers (2020), arXiv preprint: arXiv:2001.02826

  • P. Murali, A. Javadi-Abhari, F.T. Chong, M. Martonosi, Formal constraint-based compilation for noisy intermediate-scale quantum systems. Microprocess. Microsyst. 66, 102–112 (2019)

    Article  Google Scholar 

  • Y. Nam, N.J. Ross, Y. Su, A.M. Childs, D. Maslov, Automated optimization of large quantum circuits with continuous parameters. NPJ Quantum Inf. 4(1), 1–12 (2018)

    Article  Google Scholar 

  • A. Oddi, R. Rasconi, Greedy randomized search for scalable compilation of quantum circuits, in International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (Springer, 2018), pp. 446–461

    Google Scholar 

  • C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and Practitioners (Springer Science & Business Media, 2009)

    Google Scholar 

  • A. Paler, On the influence of initial qubit placement during NISQ circuit compilation, in International Workshop on Quantum Technology and Optimization Problems (Springer, 2019), pp. 207–217

    Google Scholar 

  • C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  Google Scholar 

  • J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  • L. Qiu, M. Alam, A. Ash-Saki, S. Ghosh, Analyzing resilience of variational quantum factoring under realistic noise, in Annual GOMACTech Conference, San Diego, CA, USA (2020)

    Google Scholar 

  • S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  • S. Rujikietgumjorn, R.T. Collins, Optimized pedestrian detection for multiple and occluded people, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013, pp. 3690–3697

    Google Scholar 

  • M. Schuld, A. Bocharov, K.M. Svore, N. Wiebe, Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Google Scholar 

  • A. Shafaei, M. Saeedi, M. Pedram, Qubit placement to minimize communication overhead in 2d quantum architectures, in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, 2014), pp. 495–500

    Google Scholar 

  • N.A. Sherwani, Algorithms for VLSI Physical Design Automation (Springer Science & Business Media, 2012)

    Google Scholar 

  • P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Article  Google Scholar 

  • P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  • M.Y. Siraichi, V.F. dos Santos, S. Collange, F.M.Q. Pereira, Qubit allocation, in Proceedings of the 2018 International Symposium on Code Generation and Optimization (2018), pp. 113–125

    Google Scholar 

  • M.Y. Siraichi, V.F. dos Santos, C. Collange, F.M.Q. Pereira. Qubit allocation as a combination of subgraph isomorphism and token swapping. Proc. ACM Programm. Lang. 3(OOPSLA), 1–29 (2019)

    Google Scholar 

  • M. Steffen, Superconducting Qubits are Getting Serious (2011), https://physics.aps.org/articles/pdf/10.1103/Physics.4.103. Accessed 30 March 2020

  • S.S. Tannu, M. Qureshi, Ensemble of diverse mappings: improving reliability of quantum computers by orchestrating dissimilar mistakes, in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (2019), pp. 253–265

    Google Scholar 

  • S.S. Tannu, M.K. Qureshi, Not all qubits are created equal: a case for variability-aware policies for NISQ-era quantum computers, in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (2019), pp. 987–999

    Google Scholar 

  • D. Venturelli, M. Do, E.G. Rieffel, J. Frank, Temporal planning for compilation of quantum approximate optimization circuits. IJCAI 4440–4446 (2017)

    Google Scholar 

  • D. Venturelli, M. Do, E. Rieffel, J. Frank, Compiling quantum circuits to realistic hardware architectures using temporal planners. Quantum Sci. Technol. 3(2), 025004 (2018)

    Google Scholar 

  • D. Wecker, M.B. Hastings, M. Troyer, Training a quantum optimizer. Phys. Rev. A 94(2), 022309 (2016)

    Google Scholar 

  • R. Wille, L. Burgholzer, A. Zulehner, Mapping quantum circuits to IBM QX architectures using the minimal number of swap and h operations, in 2019 56th ACM/IEEE Design Automation Conference (DAC) (IEEE, 2019), pp. 1–6

    Google Scholar 

  • R. Wille, A. Lye, R. Drechsler, Optimal swap gate insertion for nearest neighbor quantum circuits, in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, 2014), pp. 489–494

    Google Scholar 

  • C. Xue, Z.-Y. Chen, Y.-C. Wu, G.-P. Guo, Effects of quantum noise on quantum approximate optimization algorithm (2019), arXiv preprint: arXiv:1909.02196

  • L. Zhou et al., Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices (2018), arXiv preprint: arXiv:1812.01041

  • A. Zulehner, A. Paler, R. Wille, An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(7), 1226–1236 (2018)

    Google Scholar 

  • A. Zulehner, H. Bauer, R. Wille, Evaluating the flexibility of a* for mapping quantum circuits, in Reversible Computation, ed. by M.K. Thomsen, M. Soeken (Springer International Publishing, Cham, 2019), pp. 171–190

    Google Scholar 

Download references

Acknowledgements

This work is supported by SRC (2847.001), NSF (CNS-1722557, CCF-1718474, DGE-1723687, DGE-1821766, OIA-2040667 and DGE-2113839) and a Seed Grant award from the Institute for Computational and Data Sciences (ICDS) at the Pennsylvania State University. The authors would like to thank the students in LOGICS lab, Penn State and Ling Qiu for contribution on VQF. This content is solely the responsibility of the authors and does not necessarily represent the views of the ICDS and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaroop Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saki, A.A., Alam, M., Li, J., Ghosh, S. (2023). Error-Tolerant Mapping for Quantum Computing. In: Aly, M.M.S., Chattopadhyay, A. (eds) Emerging Computing: From Devices to Systems. Computer Architecture and Design Methodologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-7487-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7487-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7486-0

  • Online ISBN: 978-981-16-7487-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics