Skip to main content

Carbon Dots: Fundamental Concepts and Biomedical Applications

  • Chapter
  • First Online:
Nanotechnology for Biomedical Applications

Abstract

Carbon dots, the newest member carbon family, have attracted tremendous attention since discovery owing to their unique physiochemical properties, excellent stability, outstanding water solubility, low toxicity, and most importantly exceptional fluorescence property. These excellent properties can be tuned according to the requirement. Diverse synthesis routes made them economical and reduced the necessity for utilizing harmful chemicals causing secondary environmental and health issues. Suitable nano-dimensions coupled with biocompatibility and photo-physical properties made them one of the most suitable choices for bioimaging, biosensing, and biotherapy applications. This review article delivers a prominent point of view regarding various synthesis methods, surface passivation, and biomedical aspects of carbon dots and summarizes the latest progress and directions of carbon dots in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nikolova M, Slavchov R, Nikolova G (2020) Nanotechnology in medicine. In: Hock F, Gralinski M (eds) Drug discovery and evaluation: methods in clinical pharmacology. Springer, Cham, pp 533–546

    Chapter  Google Scholar 

  2. Li J (2015) Nanotechnology-based platform for early diagnosis of cancer. Sci Bull 60(4):488–490

    Article  CAS  Google Scholar 

  3. Bardhan S, Pal K, Roy S, Das S, Chakraborty A, Karmakar P, Basu R, Das S (2019) Nanoparticle size-dependent antibacterial activities in natural minerals. J Nanosci Nanotechnol 19(11):7112–7122

    Article  CAS  Google Scholar 

  4. Powell MC, Griffin MP, Tai S (2008) Bottom-up risk regulation? How nanotechnology risk knowledge gaps challenge federal and state environmental agencies. Environ Manage 42(3):426–443

    Article  Google Scholar 

  5. Sotropa RMB (2018) The advantages and disadvantages of nanotechnology. J Oral Rehabil 10(2):113–119

    Google Scholar 

  6. Edwards IA, Marsh H, Menendez R (2013) Introduction to carbon science. Butterworth-Heinemann

    Google Scholar 

  7. Kang Z, Lee ST (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11(41):19214–19224

    Article  CAS  Google Scholar 

  8. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381

    Article  CAS  Google Scholar 

  9. Himaja AL, Karthik PS, Singh SP (2015) Carbon dots: the newest member of the carbon nanomaterials family. Chem Rec 15(3):595–615

    Article  CAS  Google Scholar 

  10. Zhao F, Wu J, Ying Y, She Y, Wang J, Ping J (2018) Carbon nanomaterial-enabled pesticide biosensors: design strategy, biosensing mechanism, and practical application. Trac-Trend Anal Chem 106:62–83

    Article  CAS  Google Scholar 

  11. Wang L, Li W, Yin L, Liu Y, Guo H, Lai J, Han Y, Li G, Li M, Zhang J, Vajtai R (2020) Full-color fluorescent carbon quantum dots. Sci Adv 6(40):6772

    Article  Google Scholar 

  12. Cayuela A, Soriano ML, Carrillo-Carrión C, Valcárcel M (2016) Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun 52(7):1311–1326

    Article  CAS  Google Scholar 

  13. Li L, Dong T (2018) Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. J Mater Chem C 6(30):7944–7970

    Article  CAS  Google Scholar 

  14. Jaleel JA, Pramod K (2018) Artful and multifaceted applications of carbon dot in biomedicine. J Control Release 269:302–321

    Article  CAS  Google Scholar 

  15. Mishra V, Patil A, Thakur S, Kesharwani P (2018) Carbon dots: emerging theranostic nanoarchitectures. Drug Discov Today 23(6):1219–1232

    Article  CAS  Google Scholar 

  16. Zhang D, Jiang W, Zhao Y, Dong Y, Feng X, Chen L (2019) Carbon dots rooted PVDF membrane for fluorescence detection of heavy metal ions. Appl Surf Sci 494:635–643

    Article  CAS  Google Scholar 

  17. Lin Y, Zhang X, Shan X, Zeng T, Zhao X, Wang Z, Kang Z, Xu H, Liu Y (2020) Photo-tunable organic resistive random access memory based on PVP/N-doped carbon dot nanocomposites for encrypted image storage. J Mater Chem C 8(42):14789–14795

    Article  CAS  Google Scholar 

  18. Riggs JE, Guo Z, Carroll DL, Sun YP (2000) Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 122:5879–5880

    Article  CAS  Google Scholar 

  19. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  Google Scholar 

  20. Sun YP, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  Google Scholar 

  21. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int 119(34):6593–6595

    Article  Google Scholar 

  22. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319

    Article  CAS  Google Scholar 

  23. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113(43):18546–18551

    Article  CAS  Google Scholar 

  24. Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19(4):484–488

    Article  CAS  Google Scholar 

  25. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int 49(38):6726–6744

    Article  CAS  Google Scholar 

  26. Sun YP, Wang X, Lu F, Cao L, Meziani MJ, Luo PG, Gu L, Veca LM (2008) Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C 112(47):18295–18298

    Article  CAS  Google Scholar 

  27. Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 48(25):4598–4601

    Article  Google Scholar 

  28. Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41(31):9526–9531

    Article  CAS  Google Scholar 

  29. Jelinek R (2017) Carbon-dot synthesis. In: Carbon quantum dots. Springer, Cham, pp 5–27

    Google Scholar 

  30. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120

    Article  Google Scholar 

  31. Zhang B, Liu CY, Liu Y (2010) A novel one-step approach to synthesize fluorescent carbon nanoparticles. Eur J Inorg 28:4411–4414

    Article  Google Scholar 

  32. Liu C, Zhang P, Tian F, Li W, Li F, Liu W (2011) One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. J Mater Chem 21(35):13163–13167

    Article  CAS  Google Scholar 

  33. Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad TS, Zhao P, Yu Z, Li N (2016) Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B 4(45):7204–7219

    Article  CAS  Google Scholar 

  34. Jiang K, Sun S, Zhang L, Wang Y, Cai C, Lin H (2015) Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing. ACS Appl Mater Interfaces 7(41):23231–23238

    Article  CAS  Google Scholar 

  35. Schneider J, Reckmeier CJ, Xiong Y, von Seckendorff M, Susha AS, Kasák P, Rogach AL (2017) Molecular fluorescence in citric acid-based carbon dots. J Phys Chem C 121(3):2014–2022

    Article  CAS  Google Scholar 

  36. Sarkar S, Sudolska M, Dubecky M, Reckmeier CJ, Rogach AL, Zboril R, Otyepka M (2016) Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J Phys Chem C 120(2):1303–1308

    Article  CAS  Google Scholar 

  37. Hu Y, Yang J, Tian J, Jia L, Yu JS (2014) Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 77:775–782

    Article  CAS  Google Scholar 

  38. Chandra S, Patra P, Pathan SH, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A (2013) Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J Mater Chem B 1(18):2375–2382

    Article  CAS  Google Scholar 

  39. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission. Angew Chem Int Ed Engl 52(30):7800–7804

    Google Scholar 

  40. Xue M, Zhang L, Zhan Z, Zou M, Huang Y, Zhao S (2016) Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging. Talanta 150:324–330

    Article  CAS  Google Scholar 

  41. Shen C, Wang J, Cao Y, Lu Y (2015) Facile access to B-doped solid-state fluorescent carbon dots toward light emitting devices and cell imaging agents. J Mater Chem C 3(26):6668–6675

    Article  CAS  Google Scholar 

  42. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon 83:173–179

    Article  CAS  Google Scholar 

  43. Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H (2014) B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 139(10):2322–2325

    Article  CAS  Google Scholar 

  44. Han Y, Tang D, Yang Y, Li C, Kong W, Huang H, Liu Y, Kang Z (2015) Non-metal single/dual doped carbon quantum dots: a general flame synthetic method and electro-catalytic properties. Nanoscale 7(14):5955–5962

    Article  CAS  Google Scholar 

  45. Zhou J, Shan X, Ma J, Gu Y, Qian Z, Chen J, Feng H (2014) Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Adv 4(11):5465–5468

    Article  CAS  Google Scholar 

  46. Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H (2014) Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces 6(9):6797–6805

    Article  CAS  Google Scholar 

  47. Wu W, Zhan L, Fan W, Song J, Li X, Li Z, Wang R, Zhang J, Zheng J, Wu M, Zeng H (2015) Cu–N dopants boost electron transfer and photooxidation reactions of carbon dots. Angew Chem 127(22):6640–6644

    Article  Google Scholar 

  48. Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J (2016) Multifunctional N, S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104:169–178

    Article  CAS  Google Scholar 

  49. Bao L, Liu C, Zhang ZL, Pang DW (2015) Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater 27(10):1663–1667

    Article  CAS  Google Scholar 

  50. Ding H, Yu SB, Wei JS, Xiong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1):484–491

    Article  CAS  Google Scholar 

  51. Zhang Y, Yuan R, He M, Hu G, Jiang J, Xu T, Zhou L, Chen W, Xiang W, Liang X (2017) Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale 9(45):17849–17858

    Article  CAS  Google Scholar 

  52. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem 122(26):4532–4536

    Article  Google Scholar 

  53. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    Article  CAS  Google Scholar 

  54. Essner JB, Kist JA, Polo-Parada L, Baker GA (2018) Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem Mater 30(6):1878–1887

    Article  CAS  Google Scholar 

  55. Do S, Kwon W, Kim YH, Kang SR, Lee T, Lee TW, Rhee SW (2016) N, S-induced electronic states of carbon nanodots toward white electroluminescence. Adv Opt Mater 4(2):276–284

    Article  CAS  Google Scholar 

  56. Wei J, Zhang X, Sheng Y, Shen J, Huang P, Guo S, Pan J, Liu B, Feng B (2014) Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem 38(3):906–909

    Article  CAS  Google Scholar 

  57. Sangam S, Gupta A, Shakeel A, Bhattacharya R, Sharma AK, Suhag D, Chakrabarti S, Garg SK, Chattopadhyay S, Basu B, Kumar V (2018) Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond. Green Chem 20(18):4245–4259

    Article  CAS  Google Scholar 

  58. Essner JB, Laber CH, Ravula S, Polo-Parada L, Baker GA (2016) Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chem 18(1):243–250

    Article  Google Scholar 

  59. Ramanan V, Thiyagarajan SK, Raji K, Suresh R, Sekar R, Ramamurthy P (2016) Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain Chem Eng 4(9):4724–4731

    Article  CAS  Google Scholar 

  60. Zhang J, Yu SH (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19(7):382–393

    Article  CAS  Google Scholar 

  61. Bandi R, Gangapuram BR, Dadigala R, Eslavath R, Singh SS, Guttena V (2016) Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv 6(34):28633–28639

    Article  CAS  Google Scholar 

  62. Pooja D, Singh L, Thakur A, Kumar P (2019) Green synthesis of glowing carbon dots from Carica papaya waste pulp and their application as a label-freechemo probe for chromium detection in water. Sens Actuators B Chem 283:363–372

    Article  CAS  Google Scholar 

  63. Prasannan A, Imae T (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 52(44):15673–15678

    Article  CAS  Google Scholar 

  64. Himaja AL, Karthik PS, Sreedhar B, Singh SP (2014) Synthesis of carbon dots from kitchen waste: conversion of waste to value added product. J Fluoresc 24(6):1767–1773

    Article  CAS  Google Scholar 

  65. Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim JJ, Lee YR (2017) Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens Actuators B Chem 246:497–509

    Article  CAS  Google Scholar 

  66. Wang L, Zhou HS (2014) Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem 86(18):8902–8905

    Article  CAS  Google Scholar 

  67. Zhu C, Zhai J, Dong S (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal free electrocatalysts for oxygen reduction. Chem Commun 48:9367–9369

    Article  CAS  Google Scholar 

  68. Kenneth N (2013) Versatility with carbon dots-from overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv 3:15604–15607

    Article  Google Scholar 

  69. Wang L, Bi Y, Hou J, Li H, Xu Y, Wang B, Ding H, Ding L (2016) Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta 160:268–275

    Article  CAS  Google Scholar 

  70. Ding Z, Li F, Wen J, Wang X, Sun R (2018) Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem 20(6):1383–1390

    Article  CAS  Google Scholar 

  71. Liang Z, Kang M, Payne GF, Wang X, Sun R (2016) Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Appl Mater Interfaces 8(27):17478–17488

    Google Scholar 

  72. Zhao S, Lan M, Zhu X, Xue H, Ng TW, Meng X, Lee CS, Wang P, Zhang W (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7(31):17054–17060

    Article  CAS  Google Scholar 

  73. Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140(12):4260–4269

    Article  CAS  Google Scholar 

  74. D’souza SL, Chettiar SS, Koduru JR, Kailasa SK (2018) Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik 158:893–900

    Article  Google Scholar 

  75. Tripathi KM, Tran TS, Tung TT, Losic D, Kim T (2017) Water soluble fluorescent carbon nanodots from biosource for cells imaging. J Nanomater

    Google Scholar 

  76. Shen J, Shang S, Chen X, Wang D, Cai Y (2017) Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng C 76:856–864

    Article  CAS  Google Scholar 

  77. Zhang YP, Ma JM, Yang YS, Ru JX, Liu XY, Ma Y, Guo HC (2019) Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe3+ ion and bioimaging. Spectrochim Acta A 217:60–67

    Article  CAS  Google Scholar 

  78. Tan X, Li Y, Li X, Zhou S, Fan L, Yang S (2015) Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem Commun 51(13):2544–2546

    Article  CAS  Google Scholar 

  79. Zhang M, Wang W, Cui Y, Zhou N, Shen J (2018) Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. ACS Biomater Sci Eng 13:2803

    CAS  Google Scholar 

  80. Yao H, Zhao W, Zhang S, Guo X, Li Y, Du B (2018) Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J Mater Chem B 6(19):3107–3115

    Article  CAS  Google Scholar 

  81. Jia Q, Zheng X, Ge J, Liu W, Ren H, Chen S, Wen Y, Zhang H, Wu J, Wang P (2018) Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J Colloid Interface Sci 526:302–311

    Article  CAS  Google Scholar 

  82. Milosavljevic V, Nguyen HV, Michalek P, Moulick A, Kopel P, Kizek R, Adam V (2015) Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chem Pap 69(1):192–201

    Article  CAS  Google Scholar 

  83. Cui X, Xu S, Wang X, Chen C (2018) The nano-bio interaction and biomedical applications of carbon nanomaterials. Carbon 138:436–450

    Article  CAS  Google Scholar 

  84. Pandit S, Behera P, Sahoo J, De M (2019) In situ synthesis of amino acid functionalized carbon dots with tunable properties and their biological applications. ACS Appl Bio Mater 2(8):3393–3403

    Article  CAS  Google Scholar 

  85. Kong B, Zhu A, Ding C, Zhao X, Li B, Tian Y (2012) Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24(43):5844–5848

    Article  CAS  Google Scholar 

  86. Goh EJ, Kim KS, Kim YR, Jung HS, Beack S, Kong WH, Scarcelli G, Yun SH, Hahn SK (2012) Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromol 13(8):2554–2561

    Article  CAS  Google Scholar 

  87. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG (2011) Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater 21(6):1027–1031

    Article  CAS  Google Scholar 

  88. Ruan S, Qian J, Shen S, Chen J, Zhu J, Jiang X, He Q, Yang W, Gao H (2014) Fluorescent carbonaceous nanodots for noninvasive glioma imaging after angiopep-2 decoration. Bioconjug Chem 25(12):2252–2259

    Article  CAS  Google Scholar 

  89. Luo TY, He X, Zhang J, Chen P, Liu YH, Wang HJ, Yu XQ (2018) Photoluminescent F-doped carbon dots prepared by ring-opening reaction for gene delivery and cell imaging. RSC Adv 8(11):6053–6062

    Article  Google Scholar 

  90. Mehta VN, Jha S, Singhal RK, Kailasa SK (2014) Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem 38(12):6152–6160

    Article  CAS  Google Scholar 

  91. Bhunia SK, Maity AR, Nandi S, Stepensky D, Jelinek R (2016) Imaging cancer cells expressing the folate receptor with carbon dots produced from folic acid. ChemBioChem 17(7):614–619

    Article  CAS  Google Scholar 

  92. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47(24):6858–6860

    Article  CAS  Google Scholar 

  93. Song Y, Shi W, Chen W, Li X, Ma H (2012) Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem 22(25):12568–12573

    Article  CAS  Google Scholar 

  94. Zhang J, Zhao X, Xian M, Dong C, Shuang S (2018) Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183:39–47

    Article  CAS  Google Scholar 

  95. Zhao X, Zhang J, Shi L, Xian M, Dong C, Shuang S (2017) Folic acid-conjugated carbon dots as green fluorescent probes based on cellular targeting imaging for recognizing cancer cells. RSC Adv 7(67):42159–42167

    Article  CAS  Google Scholar 

  96. Lee CH, Rajendran R, Jeong MS, Ko HY, Joo JY, Cho S, Chang YW, Kim S (2013) Bioimaging of targeting cancers using aptamer-conjugated carbon nanodots. Chem Commun 49(58):6543–6545

    Article  CAS  Google Scholar 

  97. Malina T, Poláková K, Skopalík J, Milotová V, Holá K, Havrdová M, Tománková KB, Čmiel V, Šefc L, Zbořil R (2019) Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon 152:434–443

    Article  CAS  Google Scholar 

  98. Han Y, Zhang F, Zhang J, Shao D, Wang Y, Li S, Lv S, Chi G, Zhang M, Chen L, Liu J (2019) Bioactive carbon dots direct the osteogenic differentiation of human bone marrow mesenchymal stem cells. Colloids Surf B 179:1–8

    Article  CAS  Google Scholar 

  99. Li Q, Ohulchanskyy TY, Liu R, Koynov K, Wu D, Best A, Kumar R, Bonoiu A, Prasad PN (2010) Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J Phys Chem C 114(28):12062–12068

    Article  CAS  Google Scholar 

  100. Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q (2010) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46(46):8812–8814

    Article  CAS  Google Scholar 

  101. Zhang X, Wang S, Zhu C, Liu M, Ji Y, Feng L, Tao L, Wei Y (2013) Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. J Colloid Interface Sci 397:39–44

    Article  CAS  Google Scholar 

  102. Kasibabu BSB, D’souza SL, Jha S, Singhal RK, Basu H, Kailasa SK (2015) One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Anal Methods 7(6):2373–2378

    Article  CAS  Google Scholar 

  103. Song Y, Li H, Lu F, Wang H, Zhang M, Yang J, Huang J, Huang H, Liu Y, Kang Z (2017) Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. J Mater Chem B 5(30):6008–6015

    Article  CAS  Google Scholar 

  104. Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 38:20–27

    Article  CAS  Google Scholar 

  105. Chandra A, Singh N (2018) Bacterial growth sensing in microgels using pH-dependent fluorescence emission. Chem Commun 54(13):1643–1646

    Article  CAS  Google Scholar 

  106. Dong X, Awak MA, Tomlinson N, Tang Y, Sun YP, Yang L (2017) Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PloS one 12(9):e0185324

    Google Scholar 

  107. Lin F, Li C, Chen Z (2018) Bacteria-derived carbon dots inhibit biofilm formation of Escherichia coli without affecting cell growth. Front microbiol 9:259

    Article  Google Scholar 

  108. Otis G, Bhattacharya S, Malka O, Kolusheva S, Bolel P, Porgador A, Jelinek R (2018) Selective labeling and growth inhibition of Pseudomonas aeruginosa by aminoguanidine carbon dots. ACS Infect Dis 5(2):292–302

    Article  Google Scholar 

  109. Bing W, Sun H, Yan Z, Ren J, Qu X (2016) Programmed bacteria death induced by carbon dots with different surface charge. Small 12(34):4713–4718

    Article  CAS  Google Scholar 

  110. Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun YP (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309

    Article  CAS  Google Scholar 

  111. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2):281–290

    Article  CAS  Google Scholar 

  112. Li N, Liang X, Wang L, Li Z, Li P, Zhu Y, Song J (2012) Biodistribution study of carbogenic dots in cells and in vivo for optical imaging. J Nanopart Res 14(10):1177

    Article  Google Scholar 

  113. Licciardello N, Hunoldt S, Bergmann R, Singh G, Mamat C, Faramus A, Ddungu JL, Silvestrini S, Maggini M, De Cola L, Stephan H (2018) Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale 10(21):9880–9891

    Article  CAS  Google Scholar 

  114. Zhang W, Wang R, Liu W, Wang X, Li P, Zhang W, Wang H, Tang B (2018) Te-containing carbon dots for fluorescence imaging of superoxide anion in mice during acute strenuous exercise or emotional changes. Chem Sci 9(3):721–727

    Article  Google Scholar 

  115. Li Y, Lin TY, Luo Y, Liu Q, Xiao W, Guo W, Lac D, Zhang H, Feng C, Wachsmann-Hogiu S, Walton JH (2014) A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun 5(1):1–15

    Google Scholar 

  116. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):041101

    Google Scholar 

  117. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462

    Article  CAS  Google Scholar 

  118. Wu L, Cai X, Nelson K, Xing W, Xia J, Zhang R, Stacy AJ, Luderer M, Lanza GM, Wang LV, Shen B (2013) A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res 6(5):312–325

    Article  CAS  Google Scholar 

  119. Parvin N, Mandal TK (2017) Dually emissive P, N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice. Microchim Acta 184(4):1117–1125

    Article  CAS  Google Scholar 

  120. Jia Q, Ge J, Liu W, Liu S, Niu G, Guo L, Zhang H, Wang P (2016) Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale 8(26):13067–13077

    Article  CAS  Google Scholar 

  121. Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P (2015) Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater 27(28):4169–4177

    Article  CAS  Google Scholar 

  122. Zheng M, Li Y, Liu S, Wang W, Xie Z, Jing X (2016) One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl Mater Interfaces 8(36):23533–23541

    Article  CAS  Google Scholar 

  123. Zhu A, Qu Q, Shao X, Kong B, Tian Y (2012) Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem 124(29):7297–7301

    Article  Google Scholar 

  124. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697

    Article  CAS  Google Scholar 

  125. Li H, Zhang Y, Wang L, Tian J, Sun X (2011) Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun 47(3):961–963

    Article  CAS  Google Scholar 

  126. Wang Z, Dai Z (2015) Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7(15):6420–6431

    Article  CAS  Google Scholar 

  127. Ng SM (2019) Carbon dots as optical nanoprobes for biosensors. In Nanobiosensors for Biomolecular Targeting. Elsevier, pp 269–300

    Google Scholar 

  128. Ji C, Zhou Y, Leblanc RM, Peng Z (2020) Recent developments of carbon dots in biosensing: A review. ACS Sens 5(9):2724–2741

    Article  CAS  Google Scholar 

  129. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71(12):2333–2348

    Article  CAS  Google Scholar 

  130. Jiang Y, Wang B, Meng F, Cheng Y, Zhu C (2015) Microwave-assisted preparation of N-doped carbon dots as a biosensor for electrochemical dopamine detection. J Colloid Interface Sci 452:199–202

    Article  CAS  Google Scholar 

  131. Cho MJ, Park SY (2019) Carbon-dot-based ratiometric fluorescence glucose biosensor. Sens Actuators B 282:719–729

    Article  CAS  Google Scholar 

  132. Roy S, Pal K, Bardhan S, Maity S, Chanda DK, Ghosh S, Karmakar P, Das S (2019) Gd (III)-Doped boehmite nanoparticle: an emergent material for the fluorescent sensing of Cr (VI) in wastewater and live cells. Inorg Chem 58(13):8369–8378

    Article  CAS  Google Scholar 

  133. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914

    Article  CAS  Google Scholar 

  134. Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, Chen X (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86(19):9846–9852

    Article  CAS  Google Scholar 

  135. Lu L, Feng C, Xu J, Wang F, Yu H, Xu Z, Zhang W (2017) Hydrophobic-carbon-dot-based dual-emission micelle for ratiometric fluorescence biosensing and imaging of Cu2+ in liver cells. Biosens Bioelectron 92:101–108

    Article  CAS  Google Scholar 

  136. Bardhan S, Roy S, Chanda DK, Ghosh S, Mondal D, Das S, Das S (2020) Nitrogenous carbon dot decorated natural microcline: an ameliorative dual fluorometric probe for Fe3+ and Cr6+ detection. Dalton Trans 49(30):10554–10566

    Article  CAS  Google Scholar 

  137. Mohapatra S, Sahu S, Sinha N, Bhutia SK (2015) Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg2+ in water and living cells. Analyst 140(4):1221–1228

    Article  CAS  Google Scholar 

  138. Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK (2017) Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens Actuators B 242:679–686

    Article  CAS  Google Scholar 

  139. Yu L, Zhang L, Ren G, Li S, Zhu B, Chai F, Qu F, Wang C, Su Z (2018) Multicolorful fluorescent-nanoprobe composed of Au nanocluster and carbon dots for colorimetric and fluorescent sensing Hg2+ and Cr6+. Sens Actuators B 262:678–686

    Article  CAS  Google Scholar 

  140. Bui TT, Park SY (2016) A carbon dot–hemoglobin complex-based biosensor for cholesterol detection. Green Chem 18(15):4245–4253

    Article  CAS  Google Scholar 

  141. Dong W, Wang R, Gong X, Dong C (2019) An efficient turn-on fluorescence biosensor for the detection of glutathione based on FRET between N, S dual-doped carbon dots and gold nanoparticles. Anal Bioanal Chem 411(25):6687–6695

    Article  CAS  Google Scholar 

  142. Tong X, Shi S, Tong C, Iftikhar A, Long R, Zhu Y (2020) Quantum/carbon dots-based fluorescent assays for enzyme activity. Trac-Trend Anal Chem 131:116008

    Google Scholar 

  143. Shangguan J, He D, He X, Wang K, Xu F, Liu J, Tang J, Yang X, Huang J (2016) Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal Chem 88(15):7837–7843

    Article  CAS  Google Scholar 

  144. Wei L, Ma Y, Shi X, Wang Y, Su X, Yu C, Xiang S, Xiao L, Chen B (2017) Living cell intracellular temperature imaging with biocompatible dye-conjugated carbon dots. J Mater Chem B 5(18):3383–3390

    Article  CAS  Google Scholar 

  145. Roy S, Bardhan S, Chanda DK, Roy J, Mondal D, Das S (2020) In Situ-grown cdot-wrapped boehmite nanoparticles for Cr (VI) sensing in wastewater and a theoretical probe for chromium-induced carcinogen detection. ACS Appl Mater Interfaces 12(39):43833–43843

    Article  CAS  Google Scholar 

  146. Wu X, Sun S, Wang Y, Zhu J, Jiang K, Leng Y, Shu Q, Lin H (2017) A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosens Bioelectron 90:501–507

    Article  CAS  Google Scholar 

  147. Shen P, Xia Y (2014) Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem 86(11):5323–5329

    Article  CAS  Google Scholar 

  148. Kim J, Park J, Kim H, Singha K, Kim WJ (2013) Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials 34(29):7168–7180

    Article  CAS  Google Scholar 

  149. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13):3604–3613

    Article  CAS  Google Scholar 

  150. Zheng M, Liu S, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z (2014) Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv Mater 26(21):3554–3560

    Article  CAS  Google Scholar 

  151. Feng T, Ai X, Ong H, Zhao Y (2016) Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl Mater Interfaces 8(29):18732–18740

    Article  CAS  Google Scholar 

  152. Tang J, Kong B, Wu H, Xu M, Wang Y, Wang Y, Zhao D, Zheng G (2013) Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv Mater 25(45):6569–6574

    Article  CAS  Google Scholar 

  153. Pandey S, Shah R, Mewada A, Thakur M, Oza G, Sharon M (2013) Gold nanorods mediated controlled release of doxorubicin: nano-needles for efficient drug delivery. J Mater Sci 24(7):1671–1681

    CAS  Google Scholar 

  154. Li CL, Ou CM, Huang CC, Wu WC, Chen YP, Lin TE, Ho LC, Wang CW, Shih CC, Zhou HC, Lee YC (2014) Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J. Mat. Chem. B 2(28):4564–4571

    Article  CAS  Google Scholar 

  155. Ehtesabi H, Amirfazli M, Massah F, Bagheri Z (2020) Application of functionalized carbon dots in detection, diagnostic, disease treatment, and desalination: a review. Adv Nat Sci-Nanosci 11(2):025017

    Google Scholar 

  156. Zou L, Wang H, He B, Zeng L, Tan T, Cao H, He X, Zhang Z, Guo S, Li Y (2016) Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6(6):762

    Article  CAS  Google Scholar 

  157. Ghosal K, Ghosh A (2019) Carbon dots: the next generation platform for biomedical applications. Mat Sci Eng C 96:887–903

    Article  CAS  Google Scholar 

  158. Thakur M, Kumawat MK, Srivastava R (2017) Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Adv 7(9):5251–5261

    Article  CAS  Google Scholar 

  159. Yang W, Wei B, Yang Z, Sheng L (2019) Facile synthesis of novel carbon-dots/hemin nanoplatforms for synergistic photo-thermal and photo-dynamic therapies. J Inorg Biochem 193:166–172

    Article  CAS  Google Scholar 

  160. Zhao S, Wu S, Jia Q, Huang L, Lan M, Wang P, Zhang W (2020) Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chem Eng J 388:124212

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Physics, Jadavpur University, for extending their facilities.

Conflict of Interests

The authors declare no conflict of interest.

Funding Details

S.D. would like to acknowledge DST-SERB (Grant No. EEQ/2018/000747) for funding.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bardhan, S., Roy, S., Das, S. (2022). Carbon Dots: Fundamental Concepts and Biomedical Applications. In: Gopi, S., Balakrishnan, P., Mubarak, N.M. (eds) Nanotechnology for Biomedical Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7483-9_5

Download citation

Publish with us

Policies and ethics