Skip to main content

PLGA-Based Nanomaterials for Cancer Therapy

  • Chapter
  • First Online:
Nanotechnology for Biomedical Applications

Abstract

The field of nanomedicine, which is the branch of nanotechnology dealing with medicine, offers important tools in the diagnosis, treatment, and prophylaxis of diseases.

Adem Sahin—Scopus ID: 57193089016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gagliardi A, Paolino D, Costa N, Fresta M, Cosco D (2021) Zein—vs PLGA-based nanoparticles containing rutin: a comparative investigation. Mater Sci Eng C 118:111538

    Google Scholar 

  2. Rezvantalab S, Drude NI, Moraveji MK, Guvener N, Koons EK, Shi Y, Lammers T, Kiessling F (2018) PLGA-based nanoparticles in cancer treatment. Front Pharmacol 9:19

    Google Scholar 

  3. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522

    Article  CAS  Google Scholar 

  4. Erbetta CD, Alves RJ, Magalh J, de Souza Freitas RF, de Sousa RG (2012) Synthesis and characterization of poly(D,L-Lactide-co-Glycolide) copolymer. J Biomater Nanobiotechnol 3(2):18

    Google Scholar 

  5. Kim K-T, Lee J-Y, Kim D-D, Yoon I-S, Cho H-J (2019) Recent progress in the development of poly(lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy. Pharmaceutics 11(6):280

    Article  CAS  Google Scholar 

  6. Mir M, Ahmed N, ur Rehman A (2017) (Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 159:217–231

    Google Scholar 

  7. Sequeira JAD, Santos AC, Serra J, Veiga F, Ribeiro AJ (2018) Poly(lactic-co-glycolic acid) (PLGA) matrix implants. In: Grumezescu AM (ed) Nanostructures for the engineering of cells, tissues and organs. William Andrew Publishing, pp 375–402

    Google Scholar 

  8. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659

    Article  CAS  Google Scholar 

  9. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116(4):2602–2663

    Article  CAS  Google Scholar 

  10. Martins C, Sousa F, Araújo F, Sarmento B (2018) Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthcare Mater 7(1):1701035

    Article  CAS  Google Scholar 

  11. Sharma S, Parmar A, Kori S, Sandhir R (2016) PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC, Trends Anal Chem 80:30–40

    Article  CAS  Google Scholar 

  12. Xu Y, Kim C-S, Saylor DM, Koo D (2017) Polymer degradation and drug delivery in PLGA-based drug–polymer applications: a review of experiments and theories. J Biomed Mater Res B Appl Biomater 105(6):1692–1716

    Article  CAS  Google Scholar 

  13. Turecek PL, Bossard MJ, Schoetens F, Ivens IA (2016) PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci 105(2):460–475

    Article  CAS  Google Scholar 

  14. Wu B, Liang Y, Tan Y, Xie C, Shen J, Zhang M, Liu X, Yang L, Zhang F, Liu L, Cai S, Huai D, Zheng D, Zhang R, Zhang C, Chen K, Tang X, Sui X (2016) Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for the treatment of liver cancer. Mater Sci Eng, C 59:792–800

    Article  CAS  Google Scholar 

  15. Zeng X, Tao W, Mei L, Huang L, Tan C, Feng S-S (2013) Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34(25):6058–6067

    Article  CAS  Google Scholar 

  16. Gartziandia O, Herran E, Pedraz JL, Igartua M, Hernandez RM (2016) Nanotechnology-based drug-delivery systems releasing growth factors to the CNS: focusing on neurodegenerative disorders. In: Grumezescu AM (ed) Nanobiomaterials in drug delivery. William Andrew Publishing, pp 371–402

    Google Scholar 

  17. Gupta M, Sharma V, Chauhan NS (2017) Nanotechnology for oral delivery of anticancer drugs: an insight potential. In: Andronescu E, Grumezescu AM (eds) Nanostructures for oral medicine. Elsevier, pp 467–510

    Google Scholar 

  18. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269

    Article  CAS  Google Scholar 

  19. Mehta PP, Pawar VS (2018) Electrospun nanofiber scaffolds: technology and applications. In: Inamuddin AM, Mohammad A (eds), Applications of nanocomposite materials in drug delivery. Woodhead Publishing, pp 509–573

    Google Scholar 

  20. Ramazani F, Chen W, van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ (2016) Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-the-art and challenges. Int J Pharm 499(1):358–367

    Article  CAS  Google Scholar 

  21. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):R1–R4

    Article  CAS  Google Scholar 

  22. Miladi K, Sfar S, Fessi H, Elaissari A (2016) Nanoprecipitation process: from particle preparation to in vivo applications. In: Vauthier C, Ponchel G (eds) Polymer nanoparticles for nanomedicines: a guide for their design, preparation and development. Cham, Springer International Publishing, pp 17–53

    Google Scholar 

  23. Lai P, Daear W, Löbenberg R, Prenner EJ (2014) Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d, l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf, B 118:154–163

    Article  CAS  Google Scholar 

  24. Kostag M, Köhler S, Liebert T, Heinze T (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294(2):96–106

    Article  CAS  Google Scholar 

  25. Nie H, Lee LY, Tong H, Wang C-H (2008) PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J Control Release 129(3):207–214

    Article  CAS  Google Scholar 

  26. Li X, Jiang X (2018) Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 128:101–114

    Article  CAS  Google Scholar 

  27. Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA (2017) Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm 113:211–228

    Article  CAS  Google Scholar 

  28. Pham DT, Chokamonsirikun A, Phattaravorakarn V, Tiyaboonchai W (2021) Polymeric micelles for pulmonary drug delivery: a comprehensive review. J Mater Sci 56(3):2016–2036

    Article  CAS  Google Scholar 

  29. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106

    Article  CAS  Google Scholar 

  30. Fournier E, Dufresne M-H, Smith DC, Ranger M, Leroux J-C (2004) A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res 21(6):962–968

    Article  CAS  Google Scholar 

  31. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6(6):714–729

    Google Scholar 

  32. Zhang J, Wu M, Yang J, Wu Q, Jin Z (2009) Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids Surf, A 337(1):200–204

    Article  CAS  Google Scholar 

  33. Emami J, Maghzi P, Hasanzadeh F, Sadeghi H, Mirian M, Rostami M (2018) PLGA-PEG-RA-based polymeric micelles for tumor targeted delivery of irinotecan. Pharm Dev Technol 23(1):41–54

    Article  CAS  Google Scholar 

  34. Ozturk N, Kara A, Gulyuz S, Ozkose UU, Tasdelen MA, Bozkir A, Yilmaz O, Vural I (2020) Exploiting ionisable nature of PEtOx-co-PEI to prepare pH sensitive, doxorubicin-loaded micelles. J Microencapsul 37(7):467–480

    Article  CAS  Google Scholar 

  35. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    Article  CAS  Google Scholar 

  36. Zhang L, Wang Z, Xiao Y, Liu P, Wang S, Zhao Y, Shen M, Shi X (2018) Electrospun PEGylated PLGA nanofibers for drug encapsulation and release. Mater Sci Eng, C 91:255–262

    Article  CAS  Google Scholar 

  37. Yadav KS, Mishra DK, Deshpande A, Pethe AM (2019) Levels of drug targeting. Elsevier, Basic fundamentals of drug delivery, pp 269–305

    Google Scholar 

  38. Sousa D, Ferreira D, Rodrigues JL, Rodrigues LR (2019) Nanotechnology in targeted drug delivery and therapeutics. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S (eds) Applications of targeted nano drugs and delivery systems. Elsevier, pp 357–409

    Google Scholar 

  39. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  Google Scholar 

  40. Narum SM, Le T, Le DP, Lee JC, Donahue ND, Yang W, Wilhelm S (2020) Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. In: Chung EJ, Leon L, Rinaldi C (eds) Nanoparticles for biomedical applications. Elsevier, pp 37–53

    Google Scholar 

  41. Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  Google Scholar 

  42. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133(1):95–109

    CAS  Google Scholar 

  43. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF (2019) An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 71(8):1185–1198

    Article  CAS  Google Scholar 

  44. Gao C, Pan J, Lu W, Zhang M, Zhou L, Tian J (2009) In-vitro evaluation of paclitaxel-loaded MPEG–PLGA nanoparticles on laryngeal cancer cells. Anticancer Drugs 20(9):807–814

    Article  CAS  Google Scholar 

  45. Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F (2011) Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomed 6:877–895

    Article  CAS  Google Scholar 

  46. Alibolandi M, Sadeghi F, Abnous K, Atyabi F, Ramezani M, Hadizadeh F (2015) The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model. Eur J Pharm Biopharm 94:521–531

    Article  CAS  Google Scholar 

  47. Klippstein R, Wang JT-W, El-Gogary RI, Bai J, Mustafa F, Rubio N, Bansal S, Al-Jamal WT, Al-Jamal KT (2015) Passively targeted curcumin-LOADED PEGylated PLGA Nanocapsules for colon cancer therapy in vivo. Small 11(36):4704–4722

    Article  CAS  Google Scholar 

  48. Cheraga N, Sun N-C, Huang X-X, Ye Z, Xiao Q-R, Huang N-P (2020) Optimized rapamycin-loaded PEGylated PLGA nanoparticles: preparation, characterization and pharmacokinetics study. J Drug Deliv Sci Technol 102144

    Google Scholar 

  49. Priwitaningrum DL, Jentsch J, Bansal R, Rahimian S, Storm G, Hennink WE, Prakash J (2020) Apoptosis-inducing peptide loaded in PLGA nanoparticles induces anti-tumor effects in vivo. Int J Pharmaceut 585:119535

    Google Scholar 

  50. Rafiei P, Haddadi A (2017) Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomed 12:935–947

    Article  CAS  Google Scholar 

  51. Caban-Toktas S, Sahin A, Lule S, Esendagli G, Vural I, Karlı Oguz K, Soylemezoglu F, Mut M, Dalkara T, Khan M, Capan Y (2020) Combination of Paclitaxel and R-flurbiprofen loaded PLGA nanoparticles suppresses glioblastoma growth on systemic administration. Int J Pharmaceut 578:119076

    Google Scholar 

  52. Salahpour Anarjan F (2019) Active targeting drug delivery nanocarriers: ligands. Nano-Structures Nano-Objects 19:100370

    Google Scholar 

  53. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  Google Scholar 

  54. Muhamad N, Plengsuriyakarn T, Na-Bangchang K (2018) Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed 13:3921–3935

    Article  CAS  Google Scholar 

  55. Dana P, Bunthot S, Suktham K, Surassmo S, Yata T, Namdee K, Yingmema W, Yimsoo T, Ruktanonchai UR, Sathornsumetee S, Saengkrit N (2020)Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces 196:111270

    Google Scholar 

  56. Xu G, Yu X, Zhang J, Sheng Y, Liu G, Tao W, Mei L (2016) Robust aptamer-polydopamine-functionalized M-PLGA-TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. Int J Nanomed 11:2953–2965

    CAS  Google Scholar 

  57. Chung K, Ullah I, Kim N, Lim J, Shin J, Lee SC, Jeon S, Kim SH, Kumar P, Lee S-K (2020) Intranasal delivery of cancer-targeting doxorubicin-loaded PLGA nanoparticles arrests glioblastoma growth. J Drug Target 28(6):617–626

    Article  CAS  Google Scholar 

  58. Domínguez-Ríos R, Sánchez-Ramírez DR, Ruiz-Saray K, Oceguera-Basurto PE, Almada M, Juárez J, Zepeda-Moreno A, del Toro-Arreola A, Topete A, Daneri-Navarro A (2019) Cisplatin-loaded PLGA nanoparticles for HER2 targeted ovarian cancer therapy. Colloids Surf, B 178:199–207

    Article  Google Scholar 

  59. Luiz MT, Abriata JP, Raspantini GL, Tofani LB, Fumagalli F, de Melo SMG, Emery FDS, Swiech K, Marcato PD, Lee R, Marchetti JM (2019) In vitro evaluation of folate-modified PLGA nanoparticles containing paclitaxel for ovarian cancer therapy. Mater Sci Eng C 105:110038

    Google Scholar 

  60. Taghavi S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM (2017) Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett 400:1–8

    Article  CAS  Google Scholar 

  61. Duan T, Xu Z, Sun F, Wang Y, Zhang J, Luo C, Wang M (2019)HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed Pharmacother 117:109121

    Google Scholar 

  62. Saravanakumar K, Hu X, Shanmugam S, Chelliah R, Sekar P, Oh D-H, Vijayakumar S, Kathiresan K, Wang M-H (2019) Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles. Arch Biochem Biophys 671:143–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gultekin, Y., Tekin, T., Kocas, M., Capan, Y., Sahin, A. (2022). PLGA-Based Nanomaterials for Cancer Therapy. In: Gopi, S., Balakrishnan, P., Mubarak, N.M. (eds) Nanotechnology for Biomedical Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7483-9_13

Download citation

Publish with us

Policies and ethics