Skip to main content

Biomaterials and Bioceramics—Part 1: Traditional, Natural, and Nano

  • Chapter
  • First Online:
Innovative Bioceramics in Translational Medicine I

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 17))

Abstract

Even though the utilization of manmade and natural materials in the repair and reconstruction of bodily organs and tissues dates back to pre-historic times, their exploitation during the past number of decades have been fast-tracked significantly in the arenas of scientific research and clinical applications. Recognizing on the nanoscale the importance of implant-tissue interactions has resulted in the widespread development and utilization of nanotechnology in biomedical science and engineering. This notion is reinforced by the belief that functional nanostructured materials are proficient of being altered and included into a variety of biomedical implants and devices. Furthermore, natural nanostructured architecture is displayed by a variety of biological systems such as membranes, viruses, and protein complex. Conversely, highly functional architectural structures with interconnecting open pores can be discovered easily from within the marine environment. The exploitation of ready-made organic and inorganic marine skeletons has created opportunities as they could theoretically present one of the modest solutions to significant issues deterring the future research and development concerning regenerative medicine in dentistry and orthopedics such as providing ample and available supplies of osteopromotive analogues and biomineralization proteins as well as a richness of framework designs and devices. Irrespective of the conditions in which marine organisms are utilized (i.e., in their original form or converted to materials more ideal for human implantations), they are structured and created from materials that possess various characteristics and properties especially their chemical composition and high mechanical strength which affirm their potential applications in dentistry and orthopedics. The first part of the two-part chapter aims to give an overview of the different types of biomaterials and bioceramics as well as their production technique that are currently used in a number of clinical applications in dentistry and orthopedics. A brief insight into the nature, morphology, and application of marine-derived biomaterials are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Skalak R (1983) Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 49:843–848

    CAS  PubMed  Google Scholar 

  2. Ben-Nissan B, Choi AH, Cordingley RC (2008) Alumina ceramics. In: Kokubo T (ed) Bioceramics and their clinical applications. Woodhead Publishing, England, pp 233–242

    Google Scholar 

  3. Choi AH, Ben-Nissan B (2018) Anatomy, modeling and biomaterial fabrication for dental and maxillofacial applications. Bentham Science Publishers, United Arab Emirates

    Google Scholar 

  4. Clupper DC, Hench LL, Mecholsky JJ (2004) Strength and toughness of tape cast bioactive glass 45S5 following heat treatment. J Eur Ceram Soc 24:2929–2934

    CAS  Google Scholar 

  5. Clupper DC, Gough JE, Embanga PM et al (2004) Bioactive evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast attachment. J Mater Sci Mater Med 15:803–808

    CAS  PubMed  Google Scholar 

  6. Thompson ID, Hench LL (1998) Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc Inst Mech Eng H 212:127–136

    CAS  PubMed  Google Scholar 

  7. Hench LL (1988) Bioactive ceramics. In: Ducheyne P, Lemons JE (eds) Bioceramics: materials characteristics vs. in vivo behavior. Annual of the New York Academy of Science, New York, pp 54–71.

    Google Scholar 

  8. Willmann G (1998) Ceramics for total hip replacement—what a surgeon should know. Orthopedics 21:173–177

    CAS  PubMed  Google Scholar 

  9. Dartora NR, Maurício Moris IC, Poole SF et al (2021) Mechanical behavior of endocrowns fabricated with different CAD-CAM ceramic systems. J Prosthet Dent 125:117–125

    CAS  PubMed  Google Scholar 

  10. Krajangta N, Sarinnaphakorn L, Didron PP et al (2020) Development of silicon nitride ceramic for CAD/CAM restoration. Dent Mater J 39:633–638

    CAS  PubMed  Google Scholar 

  11. Papadopoulos K, Pahinis K, Saltidou K et al (2020) Evaluation of the surface characteristics of dental CAD/CAM materials after different surface treatments. Materials 13:981. https://doi.org/10.3390/ma13040981

    Article  CAS  PubMed Central  Google Scholar 

  12. Sinhori BS, Monteiro S Jr, Bernardon JK et al (2018) CAD/CAM ceramic fragments in anterior teeth: a clinical report. J Esther Restor Dent 30:96–100

    Google Scholar 

  13. Zarina R, Jaini JL, Raj RS (2017) Evolution of the software and hardware in CAD/CAM systems used in dentistry. Int J Prev Clin Dent Res 4:1–8

    Google Scholar 

  14. Strub JR, Rekow ED, Witkowski S (2006) Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 137:1289–1296

    PubMed  Google Scholar 

  15. Duret F, Blouin JL, Duret B (1988) CAD-CAM in dentistry. J Am Dent Assoc 117:715–720

    CAS  PubMed  Google Scholar 

  16. Shao H, Sun M, Zhang F et al (2018) Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res 97:68–76

    CAS  PubMed  Google Scholar 

  17. Adel-Khattab D, Giacomini F, Gildenhaar R et al (2018) Development of a synthetic tissue engineered three-dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro. J Tissue Eng Regen Med 12:44–58

    CAS  PubMed  Google Scholar 

  18. Ferrage L, Bertrand G, Lenormand P et al (2017) A review of the additive manufacturing (3DP) of bioceramics: alumina, zirconia (PSZ) and hydroxyapatite. J Aust Ceram Soc 53:11–20

    CAS  Google Scholar 

  19. Meininger S, Mandal S, Kumar A et al (2016) Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater 31:401–411

    CAS  PubMed  Google Scholar 

  20. Inzana JA, Trombetta RP, Schwarz EM et al (2015) 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater 30:232–247

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang CH, Lin CY, Liu FH et al (2015) 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity. PLoS One 10:e0143713

    Google Scholar 

  22. Lin K, Sheikh R, Romanazzo S et al (2019) 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspective. Materials 12:2660. https://doi.org/10.3390/ma12172660

    Article  CAS  PubMed Central  Google Scholar 

  23. Kolan KCR, Leu MC, Hilmas GE et al (2012) Effect of material, process parameters, and simulated body fluids on mechanical properties of 13–93 bioactive glass porous constructs made by selective laser sintering. J Mech Behav Biomed Mater 13:14–24

    PubMed  Google Scholar 

  24. Hwa LC, Rajoo S, Noor AM et al (2017) Recent advances in 3D printing of porous ceramics: a review. Curr Opin Solid State Mater Sci 21:323–347

    CAS  Google Scholar 

  25. Kolan KCR, Thomas A, Leu MC et al (2015) In vitro assessment of laser sintered bioactive glass scaffolds with different pore geometries. Rapid Prototyp J 21:152–158

    Google Scholar 

  26. Ebelmen J (1846) Untersuchungen über die verbindung der borsaure und kieselsaure mit aether. Ann Chim Phys Ser 57:319–355

    Google Scholar 

  27. Roy DM, Roy R (1954) An experimental study of the formation and properties of synthetic serpentines and related layer silicates. Am Mineral 39:957–975

    CAS  Google Scholar 

  28. Floch HG, Belleville PF, Priotton JJ et al (1995) Sol-gel optical coatings for lasers. J Am Ceram Soc Bull 74:60–63

    CAS  Google Scholar 

  29. Avellaneda CO, Macedo MA, Florentino AO et al (1994) Sol-gel coatings for optoelectronic devices. In: Proceedings SPIE Vol. 2255, optical materials technology for energy efficiency and solar energy conversion XIII, Freiburg, Germany, 9 Sept 1994. https://doi.org/10.1117/12.185396

  30. Yoldas BE (1984) Wide-spectrum anti-reflective coatings for fused silica and other glasses. Appl Opt 23:1418

    CAS  PubMed  Google Scholar 

  31. Bartlett JR, Woolfrey JL (1990) Preparations of multicomponent ceramic powders by sol-gel processing. In: Zelinski BJJ, Brinker CJ, Clark DE et al (eds) Better ceramic through chemistry, 4th edn. Materials Research Society, Pennsylvania, pp 191–196

    Google Scholar 

  32. Choi AH, Conway RC, Cazalbou S et al (2018) Maxillofacial bioceramics in tissue engineering: production techniques, properties, and applications. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: ceramics. Woodhead publishing series in biomaterials, Cambridge, pp 63–93

    Google Scholar 

  33. Choi AH, Ben-Nissan B (2017) Calcium phosphate nanocomposites for biomedical and dental applications: recent developments. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. Wiley, New Jersey, pp 423–450

    Google Scholar 

  34. Ben-Nissan B, Choi AH (2017) Calcium phosphate nanocoatings: production, physical and biological properties, and biomedical applications. In: Thian ES, Huang J, Aizawa M (eds) Nanobioceramics for healthcare applications. World Scientific Publishing, Singapore, pp 105–149

    Google Scholar 

  35. Choi AH, Ben-Nissan B (2015) Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging. Nanomedicine 10:2249–2261

    CAS  PubMed  Google Scholar 

  36. Choi AH, Ben-Nissan B, Matinlinna JP et al (2013) Current perspective: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J Dent Res 92:853–859

    CAS  PubMed  Google Scholar 

  37. Ben-Nissan B, Choi AH (2010) Nanoceramics for medical applications. In: Geckeler N (ed) Advanced nanomaterials. Wiley-VCH Verlag GmbH and Co, Germany, pp 523–553

    Google Scholar 

  38. Choi AH, Ben-Nissan B (2007) Sol-gel production of bioactive nanocoatings for medical applications: part II: current research and development. Nanomedicine 2:51–61

    CAS  PubMed  Google Scholar 

  39. Ben-Nissan B, Choi AH (2006) Sol-gel production of bioactive nanocoatings for medical applications: part I: an introduction. Nanomedicine 1:311–319

    CAS  PubMed  Google Scholar 

  40. Turner CW (1991) Sol-gel process—principles and applications. Ceram Bull 70:1487–1490

    CAS  Google Scholar 

  41. Eger M, Sterer N, Liron T et al (2017) Scaling of titanium implants entrains inflammation-induced osteolysis. Sci Rep 7:39612. https://doi.org/10.1038/srep39612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hench LL (1991) Bioceramics, from concept to clinic. J Am Ceram Soc 74:1487–1510

    CAS  Google Scholar 

  43. Orsini G, Piattelli M, Scarano A et al (2007) Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla. J Periodontol 78:209–218

    CAS  PubMed  Google Scholar 

  44. Jimbo R, Xue Y, Hayashi M et al (2011) Genetic responses to nanostructured calcium-phosphate-coated implants. J Dent Res 90:1422–1427

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Oh S, Tobin E, Yang Y et al (2005) In vivo evaluation of hydroxyapatite coatings of different crystallinities. Int J Oral Maxillofac Implants 20:726–731

    PubMed  Google Scholar 

  46. Surmeneva MA, Surmeneva RA, Nikonova YA et al (2014) Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications. Appl Surf Sci 317:172–180

    CAS  Google Scholar 

  47. Kim HW, Kim HE, Salih V et al (2005) Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. J Biomed Mater Res A 74:294–305

    PubMed  Google Scholar 

  48. Zhang M, Matinlinna JP (2012) E-glass fiber reinforced composites in dental applications. SILICON 4:73–78

    CAS  Google Scholar 

  49. Luthria A, Srirekha A, Hegde J et al (2012) The reinforcement effect of polyethylene fibre and composite impregnated glass fibre on fracture resistance of endodontically treated teeth: an in vitro study. J Conserv Dent 15:372–376

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Summitt JB, Robbins JW, Hilton JT et al (2006) Fundamentals of operative dentistry: a contemporary approach, 3rd edn. Quintessence Publishing Co. Inc, Illinois

    Google Scholar 

  51. Swift E Jr (2005) Nanocomposites. J Esthet Restor Dent 17:3–4

    Google Scholar 

  52. Saunders SA (2009) Current practicality of nanotechnology in dentistry. Part 1: focus on nanocomposite restoratives and biomimetics. Clin Cosmet Investig Dent 1:47–61

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Melander J, Dunn WP, Link MP et al (2011) Comparison of flexural properties and surface roughness of nanohybrid and microhybrid dental composites. Gen Dent 59:342–347

    PubMed  Google Scholar 

  54. de Moraes RR, Gonçalves Lde S, Lancellotti AC et al (2009) Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins? Oper Dent 34:551–557

    PubMed  Google Scholar 

  55. Demirci M, Tuncer S, Sancakli HS et al (2018) Five-year Clinical evaluation of a nanofilled and a nanohybrid composite in class IV cavities. Oper Dent 43:261–271

    CAS  PubMed  Google Scholar 

  56. Yazici AR, Antonson SA, Kutuk ZB et al (2017) Thirty-six-month clinical comparison of bulk fill and nanofill composite restorations. Oper Dent 42:478–485

    CAS  PubMed  Google Scholar 

  57. de Andrade AK, Duarte RM, Medeiros e Silva FD et al (2011) 30-month randomised clinical trial to evaluate the clinical performance of a nanofill and a nanohybrid composite. J Dent 39:8–15

    Google Scholar 

  58. Mahmoud SH, El-Embaby AE, AbdAllah AM et al (2008) Two-year clinical evaluation of ormocer, nanohybrid and nanofill composite restorative systems in posterior teeth. J Adhes Dent 10:315–322

    PubMed  Google Scholar 

  59. Dresch W, Volpato S, Gomes JC et al (2006) Clinical evaluation of a nanofilled composite in posterior teeth: 12-month results. Oper Dent 31:409–417

    PubMed  Google Scholar 

  60. Efes BG, Dörter C, Gömeç Y et al (2006) Two-year clinical evaluation of ormocer and nanofill composite with and without a flowable liner. J Adhes Dent 8:119–126

    PubMed  Google Scholar 

  61. Ernst CP, Brandenbusch M, Meyer G et al (2006) Two-year clinical performance of a nanofiller vs a fine-particle hybrid resin composite. Clin Oral Investig 10:119–125

    PubMed  Google Scholar 

  62. Senawongse P, Pongprueksa P (2007) Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing. J Esthet Restor Dent 19:265–275

    PubMed  Google Scholar 

  63. Taha DG, Abdel-Samad AA, Mahmoud SH (2011) Fracture resistance of maxillary premolars with class II MOD cavities restored with ormocer, nanofilled, and nanoceramic composite restorative systems. Quintessence Int 42:579–587

    PubMed  Google Scholar 

  64. Zhang L, Weir MD, Chow LC et al (2016) Novel rechargeable calcium phosphate dental nanocomposite. Dent Mater 32:285–293

    PubMed  Google Scholar 

  65. Moreau JL, Weir MD, Giuseppetti AA et al (2012) Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater 100:1264–1273

    PubMed  PubMed Central  Google Scholar 

  66. Moreau JL, Sun L, Chow LC et al (2011) Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B Appl Biomater 98:80–88

    PubMed  PubMed Central  Google Scholar 

  67. Weir MD, Ruan J, Zhang N (2017) Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions. Dent Mater 33:1033–1044

    CAS  PubMed  Google Scholar 

  68. Weir MD, Chow LC, Xu HH (2012) Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res 91:979–984

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ben-Nissan B, Choi AH, Macha I (2017) Advances in bioglass and glass ceramics for biomedical applications. In: Li Q, Mai YW (eds) Biomaterials for implants and scaffolds. Springer series in biomaterials science and engineering (SSBSE), Germany, pp 133–161

    Google Scholar 

  70. Hench LL, Greenspan D (2013) Interactions between bioactive glass and collagen: a review and new perspectives. J Aust Ceram Soc 49:1–40

    CAS  Google Scholar 

  71. Gross U, Kinne R, Schmitz HJ et al (1988) The response of bone to surface active glass/glass-ceramics. CRC Crit Rev Biocomput 4:2–15

    Google Scholar 

  72. Hench LL, Wilson J (1984) Surface active materials. Science 226:630–636

    CAS  PubMed  Google Scholar 

  73. Hench LL, Splinter RJ, Allen WC et al (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 2:117–141

    Google Scholar 

  74. Boccaccini AR, Erol M, Stark WJ et al (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776

    CAS  Google Scholar 

  75. Stark WJ, Mädler L, Maciejewski M et al (2003) Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid. Chem Commun 5:588–589

    Google Scholar 

  76. Vollenweider M, Brunner TJ, Knecht S et al (2007) Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater 3:936–943

    CAS  PubMed  Google Scholar 

  77. Keller L, Offner D, Schwinté P et al (2015) Active nanomaterials to meet the challenge of dental pulp regeneration. Materials 8:7461–7471

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Albuquerque MT, Valera MC, Nakashima M et al (2014) Tissue-engineering-based strategies for regenerative endodontics. J Dent Res 93:1222–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bae WJ, Min KS, Kim JJ et al (2012) Odontogenic responses of human dental pulp cells to collagen/nanobioactive glass nanocomposites. Dent Mater 28:1271–1279

    CAS  PubMed  Google Scholar 

  80. Moonesi Rad R, Atila D, Akgün EE et al (2019) Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics. Mater Sci Eng C Mater Biol Appl 100:928–948

    CAS  PubMed  Google Scholar 

  81. Kim GH, Park YD, Lee SY et al (2015) Odontogenic stimulation of human dental pulp cells with bioactive nanocomposite fiber. J Biomater Appl 29:854–866

    CAS  PubMed  Google Scholar 

  82. Choi AH, Matinlinna J, Ben-Nissan B (2013) Effects of micromovement on the changes in stress distribution of partially stabilized zirconia (PS-ZrO2) dental implants and bridge during clenching: a three-dimensional finite element analysis. Acta Odontol Scand 71:72–81

    CAS  PubMed  Google Scholar 

  83. Giordano R, Sabeosa CE (2010) Zirconia: material background and clinical application. Compend Contin Educ Dent 31:710–715

    PubMed  Google Scholar 

  84. Depprich R, Zipprich H, Ommerborn M et al (2008) Osseointegration of zirconia implants: an SEM observation of the bone-implant interface. Head Face Med 4:25

    PubMed  PubMed Central  Google Scholar 

  85. Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35:819–826

    CAS  PubMed  Google Scholar 

  86. Clarke IC, Manaka M, Green DD et al (2003) Current status of zirconia used in total hip implants. J Bone Joint Surg Am 85A:73–84

    Google Scholar 

  87. Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel? Nature 258:703–704

    CAS  Google Scholar 

  88. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25

    CAS  PubMed  Google Scholar 

  89. Yoshimura M, Noma T, Kawabata K et al (1987) Role of H2O on the degradation process of Y-TZP. J Mater Sci Lett 6:465

    CAS  Google Scholar 

  90. Nawa M, Nakamoto S, Sekino T et al (1998) Tough and strong Ce-TZP/alumina nanocomposites doped with titania. Ceramic Int 24:497–506

    CAS  Google Scholar 

  91. Komasa S, Nishizaki M, Zhang H et al (2019) Osseointegration of alkali-modified NANOZR implants: an in vivo study. Int J Mol Sci 20:842

    CAS  PubMed Central  Google Scholar 

  92. Okabe E, Ishihara Y, Kikuchi T et al (2016) Adhesion properties of human oral epithelial-derived cells to zirconia. Clin Implant Dent Relat Res 18:906–916

    PubMed  Google Scholar 

  93. Han JM, Hong G, Matsui H et al (2014) The surface characterization and bioactivity of NANOZR in vitro. Dent Mater J 33:210–219

    CAS  PubMed  Google Scholar 

  94. Takano T, Tasaka A, Yoshinari M et al (2012) Fatigue strength of Ce-TZP/Al2O3 nanocomposite with different surfaces. J Dent Res 91:800–804

    CAS  PubMed  Google Scholar 

  95. Yamashita D, Machigashira M, Miyamoto M et al (2009) Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J 28:461–470

    CAS  PubMed  Google Scholar 

  96. Giri S, Trewyn BG, Lin VS (2007) Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomedicine 2:99–111

    CAS  PubMed  Google Scholar 

  97. Schroeder A, Turjeman K, Schroeder JE et al (2010) Using liposomes to target infection and inflammation induced by foreign body injuries or medical implants. Expert Opin Drug Deliv 7:1175–1189

    CAS  PubMed  Google Scholar 

  98. Rizwan SB, Boyd BJ, Rades T et al (2010) Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv 7:1133–1144

    CAS  PubMed  Google Scholar 

  99. Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    CAS  PubMed  Google Scholar 

  100. Wu C, Chang J, Zhai W et al (2007) A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J Mater Sci Mater Med 18:857–864

    CAS  PubMed  Google Scholar 

  101. Choi AH, Ben-Nissan B, Conway RC et al (2014) Advances in calcium phosphate nanocoatings and nanocomposites. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer series in biomaterials science and engineering (SSBSE), Germany, pp 485–509

    Google Scholar 

  102. Ben-Nissan B, Macha I, Cazalbou S et al (2016) Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis. Nanomedicine 11:531–544

    CAS  PubMed  Google Scholar 

  103. Victor SP, Sharma CP (2012) Calcium phosphates as drug delivery systems. J Biomater Tissue Eng 2:269–279

    CAS  Google Scholar 

  104. Palazzo B, Iafisco M, Laforgia M et al (2007) Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188

    CAS  Google Scholar 

  105. Mann S (1995) Biomineralization and biomimetic materials chemistry. J Mater Chem 5:935–946

    CAS  Google Scholar 

  106. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    CAS  Google Scholar 

  107. Arslan B, Padela MT, Madassery S et al (2018) Combination ipsilateral lobar and segmental radioembolization using glass yttrium-90 microspheres for treatment of multifocal hepatic malignancies. J Vasc Interv Radiol 29:1110–1116

    PubMed  Google Scholar 

  108. James T, Hill J, Fahrbach T et al (2017) Differences in radiation activity between glass and resin 90y microspheres in treating unresectable hepatic cancer. Health Phys 112:300–304

    CAS  PubMed  Google Scholar 

  109. Mikell JK, Mahvash A, Siman W et al (2016) Selective internal radiation therapy with yttrium-90 glass microspheres: biases and uncertainties in absorbed dose calculations between clinical dosimetry models. Int J Radiat Oncol Biol Phys 96:888–896

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gates VL, Marshall KG, Salzig K et al (2014) Outpatient single-session yttrium-90 glass microsphere radioembolization. J Vasc Interv Radiol 25:266–270

    PubMed  Google Scholar 

  111. Kawashita M, Matsui N, Li Z et al (2011) Preparation, structure, and in vitro chemical durability of yttrium phosphate microspheres for intra-arterial radiotherapy. J Biomed Mater Res B Appl Biomater 99:45–50

    PubMed  Google Scholar 

  112. Kawashita M, Takayama Y, Kokubo T et al (2006) Enzymatic preparation of hollow yttrium oxide microspheres for in situ radiotherapy of deep-seated cancer. J Am Ceram Soc 89:1347–1351

    CAS  Google Scholar 

  113. Kawashita M, Shineha R, Kim HM et al (2003) Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. Biomaterials 24:2955–2963

    CAS  PubMed  Google Scholar 

  114. Kawashita M, Tanaka M, Kokubo T et al (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26:2231–2238

    CAS  PubMed  Google Scholar 

  115. Wang Y, Chen L (2011) Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine 7:385–402

    CAS  PubMed  Google Scholar 

  116. Zhang H, Yee D, Wang C (2008) Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine 3:83–91

    CAS  PubMed  Google Scholar 

  117. Hasna K, Kumar SS, Komath M et al (2013) Synthesis of chemically pure, luminescent Eu3+ doped HAp nanoparticles: a promising fluorescent probe for in vivo imaging applications. Phys Chem Chem Phys 15:8106–8111

    CAS  PubMed  Google Scholar 

  118. LeGeros R (1965) Effect of carbonate ion the lattice parameters of apatite. Nature 24:403–404

    Google Scholar 

  119. Chen F, Huang P, Zhu YJ et al (2012) Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials 33:6447–6455

    CAS  PubMed  Google Scholar 

  120. Barta CA, Sachs-Barrable K, Jia J et al (2007) Lanthanide containing compounds for therapeutic care in bone resorption disorders. Dalton Trans 21:5019–5030

    Google Scholar 

  121. Sundarabharathi L, Parangusan H, Ponnamma D et al (2018) In-vitro biocompatibility, bioactivity and photoluminescence properties of Eu3+/Sr2+ dual-doped nano-hydroxyapatite for biomedical applications. J Biomed Mater Res B Appl Biomater 106:2191–2201

    CAS  PubMed  Google Scholar 

  122. Xie Y, He W, Li F et al (2016) Luminescence enhanced Eu3+/Gd3+ co-doped hydroxyapatite nanocrystals as imaging agents in vitro and in vivo. ACS Appl Mater Interfaces 8:10212–10219

    CAS  PubMed  Google Scholar 

  123. Chen MH, Yoshioka T, Ikoma T et al (2014) Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles. Sci Technol Adv Mater 15:055005

    Google Scholar 

  124. Cheng F, Sun K, Zhao Y et al (2014) Synthesis and characterization of HA/YVO4: Yb3+, Er3+ up-conversion luminescent nano-rods. Ceram Int 40:11329–11334

    CAS  Google Scholar 

  125. Jadalannagari S, Deshmukh K, Verma AK et al (2014) Lanthanum-doped hydroxyapatite nanoparticles as biocompatible fluorescent probes for cellular internalization and biolabeling. Sci Adv Mater 6:312–319

    CAS  Google Scholar 

  126. Ashokan A, Gowd GS, Somasundaram VH et al (2013) Multifunctional calcium phosphate nano-contrast agent for combined nuclear, magnetic and near-infrared in vivo imaging. Biomaterials 34:7143–7157

    CAS  PubMed  Google Scholar 

  127. Wagner DE, Eisenmann KM, Nestor-Kalinoski AL et al (2013) A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications. Acta Biomater 9:8422–8432

    CAS  PubMed  Google Scholar 

  128. Altinoğlu EI, Russin TJ, Kaiser JM et al (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2:2075–2084

    PubMed  Google Scholar 

  129. Guo Y, Shi D, Lian J et al (2008) Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging. Nanotechnology 19:175102

    Google Scholar 

  130. Mondejar SP, Kovtun A, Epple M (2007) Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments. J Mater Chem 17:4153–4159

    CAS  Google Scholar 

  131. Mann S (1983) Mineralization in biological systems. Struct Bond 54:125

    CAS  Google Scholar 

  132. Choi AH, Ben-Nissan B (eds) (2019) Marine-derived biomaterials for tissue engineering applications. Springer series in biomaterials science and engineering, vol 14, Singapore

    Google Scholar 

  133. Choi AH, Cazalbou S, Ben-Nissan B (2016) Biomimetics and marine materials in drug delivery and tissue engineering. In: Antoniac I (ed) Handbook of bioceramics and biocomposites. Springer Publishing, Germany, pp 521–544

    Google Scholar 

  134. Parker AR, Martini N (2006) Structural color in animals-simple to complex optics. Opt Laser Technol 38:315–322

    Google Scholar 

  135. Mock T, Samanta MP, Iverson V et al (2008) Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc Natl Acad Sci USA 105:1579–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Macha IJ, Ozyegin LS, Chou J et al (2013) An alternative synthesis method for di calcium phosphate (monetite) powders from mediterranean mussel (mytilus galloprovincialis) shells. J Aust Ceram Soc 49:122–128

    CAS  Google Scholar 

  137. Rocha JH, Lemos AF, Agathopoulos S et al (2006) Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. J Biomed Mater Res A 77:160–168

    CAS  PubMed  Google Scholar 

  138. Martina M, Subramanyam G, Weaver JC et al (2005) Developing microporous bicontinuous materials as scaffolds for tissue engineering. Biomaterials 26:5609–5616

    CAS  PubMed  Google Scholar 

  139. Green D, Walsh D, Yang X et al (2004) Stimulation of human bone marrow stromal cells using growth factor-encapsulated calcium carbonate porous microspheres. J Mater Chem 14:2206–2212

    CAS  Google Scholar 

  140. Roy DM, Linnehan S (1974) Hydroxyapatite formed from coral skeleton carbonate by hydrothermal exchange. Nature 247:220–222

    CAS  PubMed  Google Scholar 

  141. Townley HE, Parker AR, White-Cooper H (2008) Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv Funct Mater 18:369–374

    CAS  Google Scholar 

  142. Nicklas M, Schatton W, Heinemann S et al (2009) Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17b-estradiolhemihydrate. Drug Dev Ind Pharm 35:1035–1042

    CAS  PubMed  Google Scholar 

  143. Swatschek D, Schatton W, Kellermann J et al (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface pH, moisture and sebum. Eur J Pharm Biopharm 53:107–113

    CAS  PubMed  Google Scholar 

  144. Miserez A, Weaver JC, Thurner PJ et al (2008) Effects of laminate architecture on fracture resistance of sponge biosilica: lessons from nature. Adv Funct Mater 18:1241–1248

    CAS  Google Scholar 

  145. Aizenberg J, Weaver JC, Thanawala MS et al (2005) Skeleton of Euplectella sp structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    CAS  PubMed  Google Scholar 

  146. Boute N, Exposito JY, Boury-Esnault N et al (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44

    CAS  PubMed  Google Scholar 

  147. Exposito JY, Cluzel C, Garrone R et al (2002) Evolution of collagens. Anat Rec 268:302–316

    CAS  PubMed  Google Scholar 

  148. Vago R, Plotquin D, Bunin A et al (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50:253–259

    CAS  PubMed  Google Scholar 

  149. Ben-Nissan B, Choi AH, Green DW (2019) Marine derived biomaterials for bone regeneration and tissue engineering: learning from nature. In: Choi AH, Ben-Nissan B (eds) Marine-derived biomaterials for tissue engineering applications. Springer series in biomaterials science and engineering, vol 14. Singapore, pp 51–78

    Google Scholar 

  150. Chou J, Valenzuela SM, Santos J et al (2014) Strontium- and magnesium-enriched biomimetic β-TCP macrospheres with potential for bone tissue morphogenesis. J Tissue Eng Regen Med 8:771–778

    CAS  PubMed  Google Scholar 

  151. Chou J, Ben-Nissan B, Green DW et al (2011) Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of microspherical shells from coral beach sand. Adv Eng Mater 13:93–99

    CAS  Google Scholar 

  152. Green DW, Li G, Milthorpe B et al (2012) Adult stem cell coatings for regenerative medicine. Mater Today 15:60–66

    CAS  Google Scholar 

  153. Chou J, Ito T, Bishop D et al (2013) Controlled release of simvastatin from biomimetic β-TCP drug delivery system. PLoS ONE 8:e54676. https://doi.org/10.1371/journal.pone.0054676

  154. Raz S, Hamilton P, Wilt F et al (2003) The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv Funct Mater 13:480–486

    CAS  Google Scholar 

  155. Ben-Nissan B, Green DW (2013) Marine materials in drug delivery and tissue engineering: from natural role models, to bone regeneration and repair and slow delivery of therapeutic drugs, proteins and genes. In: Kim S-K (ed) Marine biomaterials. Taylor and Francis/CSR Books, Boca Raton, pp 575–602

    Google Scholar 

  156. Norton MR, Kay GW, Brown MC et al (2020) Bone glue—the final frontier for fracture repair and implantable device stabilization. Int J Adhes Adhes 102:102647. https://doi.org/10.1016/j.ijadhadh.2020.102647

  157. Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol 9:661–681

    CAS  Google Scholar 

  158. Waite JH (2017) Mussel adhesion—essential footwork. J Exp Biol 220:517–530

    PubMed  PubMed Central  Google Scholar 

  159. Sousa MP, Mano JF (2017) Cell-adhesive bioinspired and catechol-based multilayer freestanding membranes for bone tissue engineering. Biomimetics 2:19

    PubMed Central  Google Scholar 

  160. Yu J, Wei W, Menyo MS et al (2013) Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. Biomacromol 14:1072–1077

    CAS  Google Scholar 

  161. Wang J, Liu C, Lu X et al (2007) Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein. Biomaterials 28:3456–3468

    CAS  PubMed  Google Scholar 

  162. Balkenende DWR, Winkler SM, Messersmith PB (2019) Marine-inspired polymers in medical adhesion. Eur Polym J 116:134–143

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Yin D, Komasa S, Yoshimine S et al (2019) Effect of mussel adhesive protein coating on osteogenesis in vitro and osteointegration in vivo to alkali-treated titanium with nanonetwork structures. Int J Nanomedicine 14:3831–3843

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Song WK, Kang JH, Cha JK et al (2018) Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects. J Periodontal Implant Sci 48:305–316

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Choi BH, Cheong H, Ahn JS et al (2015) Engineered mussel bioglue as a functional osteoinductive binder for grafting of bone substitute particles to accelerate in vivo bone regeneration. J Mater Chem B 3:546–555

    CAS  PubMed  Google Scholar 

  166. Yang HS, Park J, La WG et al (2012) 3,4-dihydroxyphenylalanine-assisted hydroxyapatite nanoparticle coating on polymer scaffolds for efficient osteoconduction. Tissue Eng Part C Methods 18:245–251

    CAS  PubMed  Google Scholar 

  167. Hong JM, Kim BJ, Shim JH et al (2012) Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins. Acta Biomater 8:2578–2586

    CAS  PubMed  Google Scholar 

  168. Waite JH, Andersen NH, Jewhurst S et al (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhesion 81:297–317

    CAS  Google Scholar 

  169. Grande DA, Pitman MI (1988) The use of adhesives in chondrocyte transplantation surgery. Preliminary studies. Bull Hosp Jt Dis Orthop Inst 48:140–148

    CAS  PubMed  Google Scholar 

  170. Kord Forooshani P, Lee BP (2017) Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci A Polym Chem 55:9–33

    CAS  PubMed  Google Scholar 

  171. Lu Q, Danner E, Waite JH et al (2013) Adhesion of mussel foot proteins to different substrate surfaces. J R Soc Interface 10:20120759

    PubMed  PubMed Central  Google Scholar 

  172. Sun C, Fantner GE, Adams J et al (2007) The role of calcium and magnesium in the concrete tubes of the sandcastle worm. J Exp Biol 210:1481–1488

    CAS  PubMed  Google Scholar 

  173. Zhao H, Sun C, Stewart RJ et al (2005) Cement proteins of the tube-building polychaete Phragmatopoma californica. J Biol Chem 280:42938

    CAS  PubMed  Google Scholar 

  174. Stewart RJ, Weaver JC, Morse DE et al (2004) The tube cement of Phragmatopoma californica: a solid foam. J Exp Biol 207:4727–4734

    CAS  PubMed  Google Scholar 

  175. British Dental Journal (2020) UK dentistry involved in groundbreaking clinical trial for new orthopaedic material. Br Dent J 229:158. https://doi.org/10.1038/s41415-020-2030-8

    Article  Google Scholar 

  176. Costa RR, Soares da Costa D et al (2019) Bioinspired baroplastic glycosaminoglycan sealants for soft tissues. Acta Biomater 87:108–117

    CAS  PubMed  Google Scholar 

  177. Kirillova A, Kelly C, von Windheim N et al (2018) Bioinspired mineral-organic bioresorbable bone adhesive. Adv Healthc Mater 7:e1800467. https://doi.org/10.1002/adhm.201800467

  178. Mann LK, Papanna R, Moise KJ Jr et al (2012) Fetal membrane patch and biomimetic adhesive coacervates as a sealant for fetoscopic defects. Acta Biomater 8:2160–2165

    CAS  PubMed  Google Scholar 

  179. Winslow BD, Shao H, Stewart RJ et al (2010) Biocompatibility of adhesive complex coacervates modeled after the sandcastle glue of Phragmatopoma californica for craniofacial reconstruction. Biomaterials 31:9373–9381

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy H. Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, A.H. (2022). Biomaterials and Bioceramics—Part 1: Traditional, Natural, and Nano. In: Choi, A.H., Ben-Nissan, B. (eds) Innovative Bioceramics in Translational Medicine I. Springer Series in Biomaterials Science and Engineering, vol 17. Springer, Singapore. https://doi.org/10.1007/978-981-16-7435-8_1

Download citation

Publish with us

Policies and ethics