Skip to main content

Recent Distributional Shifts and Hybridization in Marine Fishes of Japan

  • Chapter
  • First Online:
Fish Diversity of Japan

Abstract

The Japanese Archipelago separates the Sea of Japan from the North Pacific Ocean to the west and east, respectively. The Sea of Japan is a semi-enclosed marginal sea, on which the influence of global warming was remarkable during the twentieth century. The sea surface temperature rose three times faster than that of the world ocean, including the North Pacific Ocean. In response to the warming of the Sea of Japan, rapid northward range shifts have been observed in many marine fishes, some of which have shown increases in the rate of natural hybridization with their close relatives. A notable example is the mass occurrence of natural hybridization observed between two closely related pufferfishes, Takifugu snyderi and Takifugu stictonotus, between 2012 and 2014. Another example is the recent increase in the number of natural hybrids between two yellowtails, Seriola quinqueradiata and Seriola lalandi. In both cases, rapid distributional shifts in one of the two species, and the rarity of one parental species in spawning populations, were the likely causes of the increased hybridization. In the former example, past mitochondrial DNA introgression was distinguished from the recent and ongoing hybridization, indicating that hybridization has occurred not only recently, but also occasionally in the past. Although there is evidence of ancient hybridization in many other marine fishes, where past hybridization may have played a role in their diversification, the effects of environmental changes on the temporal dynamics of hybridization remain largely unknown. Continuous monitoring and the application of population genomics to these ongoing hybridizations may provide insight into the relationship between climate change and hybridization dynamics, where the global temperature is now approaching that of the last interglacial period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Mertinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. J Evol Biol 26:229–246

    CAS  PubMed  Google Scholar 

  • Abe T, Tabeta O (1994) Pufferfishes available in Japan: an illustrated guide to their identification. Chuouhouki Publ. Co., Tokyo

    Google Scholar 

  • Akihito, Fumihito A, Ikeda Y, Aizawa M, Makino T, Umehara Y, Kai Y, Nishimoto Y, Hasegawa M, Nakabo T, Gojobori T (2008) Evolution of Pacific Ocean and the Sea of Japan populations of the gobiid species, Pterogobius elapoides and Pterogobius zonoleucus, based on molecular and morphological analyses. Gene 427:7–18

    CAS  PubMed  Google Scholar 

  • Albert V, Jónsson B, Bernatchez L (2006) Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Mol Ecol 15:1903–1916

    CAS  PubMed  Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    Google Scholar 

  • Anderson EC (2008) Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos Trans R Soc Lond Ser B Biol Sci 363:2841–2850

    Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold ML, Hamlin JA, Brothers AN, Ballerini ES, Singh RS, Xu J, Kulathinal RJ (2012) Natural hybridization as a catalyst of rapid evolutionary change. In: Rama S, Singh RS, Xu J, Kulathinal RJ (eds) Rapidly evolving genes and genetic systems, 1st edn. Oxford Univ Press, Oxford, pp 256–265

    Google Scholar 

  • Barth JM, Gubili C, Matschiner M, Tørresen OK, Watanabe S, Egger B, Han Y-S, Feunteun E, Sommaruga R, Jehle R, Schabetsberger R (2020) Stable species boundaries despite ten million years of hybridization in tropical eels. Nat Commun 11:1–13

    Google Scholar 

  • Becker M, Gruenheit N, Steel M, Voelckel C, Deusch O, Heenan PB, McLenachan PA, Kardailsky O, Leigh JW, Lockhart PJ (2013) Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nat Clim Chang 3:1039–1043

    Google Scholar 

  • Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    CAS  PubMed  Google Scholar 

  • Bettles CM, Docker MF, Dufour B, Heath DD (2005) Hybridization dynamics between sympatric species of trout: loss of reproductive isolation. J Evol Biol 18:1220–1233

    CAS  PubMed  Google Scholar 

  • Bova S, Rosenthal Y, Liu Z, Godad SP, Yan M (2021) Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589:548–553

    CAS  PubMed  Google Scholar 

  • Brennan AC, Woodward G, Seehausen O, Muñoz-Fuentes V, Moritz C, Guelmami A, Abbott RJ, Edelaar P (2014) Hybridization due to changing species distributions: adding problems or solutions to conservation of biodiversity during global change? Evol Ecol Res 16:475–491

    Google Scholar 

  • Burford MO, Bernardi G, Carr MH (2011) Analysis of individual year-classes of a marine fish reveals little evidence of first-generation hybrids between cryptic species in sympatric regions. Mar Biol 158:1815–1827

    Google Scholar 

  • Chunco AJ (2014) Hybridization in a warmer world. Ecol Evol 4(10):2019–2031

    PubMed  PubMed Central  Google Scholar 

  • Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383

    CAS  Google Scholar 

  • Dyldin YV, Matsuura K, Makeev SS (2016) Comments on puffers of the genus Takifugu from Russian waters with the first record of yellowfin puffer, Takifugu xanthopterus (Tetraodontiformes, Tetraodontidae) from Sakhalin Island. Bull Natl Mus Nat Sci Ser A 42:133–141

    Google Scholar 

  • Epifanio JM, Phillipp DP (1997) Sources for misclassifying genealogical origins in mixed hybrid populations. J Hered 88:62–65

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frusher SD, Hobday AJ, Jennings SM, Creighton C, D’Silva D, Haward M, Holbrook NJ, Nursey-Bray M, Pecl GT, van Putten EI (2014) The short history of research in a marine climate change hotspot: from anecdote to adaptation in south-east Australia. Rev Fish Biol Fish 24:593–611

    Google Scholar 

  • Gamo T, Nakayama N, Takahata N, Sano Y, Zhang J, Yamazaki E, Taniyasu S, Yamashita N (2014) The Sea of Japan and its unique chemistry revealed by time-series observations over the last 30 years. Monogr Environ Earth Planets 2:1–22

    Google Scholar 

  • Garroway CJ, Bowman J, Cascaden TJ, Holloway GL, Mahan CG, Malcolm JR, Steele MA, Turner G, Wilson PJ (2010) Climate change induced hybridization in flying squirrels. Glob Chang Biol 16:133–121

    Google Scholar 

  • Grabenstein KC, Taylor SA (2018) Breaking barriers: causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol Evol 33:198–212

    PubMed  Google Scholar 

  • Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98

    Google Scholar 

  • Herder F, Nolte AW, Pfaender J, Schwarzer J, Hadiaty RK, Schliewen UK (2006) Adaptive radiation and hybridization in Wallace’s Dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi. Proc R Soc B 273:2209–2217

    PubMed  PubMed Central  Google Scholar 

  • Heusser LE, Morley JJ (1985) Pollen and radiolarian records from deep-sea core RC14-103: climatic reconstructions of northeast Japan and northwest Pacific for the last 90,000 years. Quat Res 24:60–72

    Google Scholar 

  • Higuchi M, Goto A (1996) Genetic evidence supporting the existence of two distinct species in the genus Gasterosteus around Japan. Environ Biol Fish 47:1–16

    Google Scholar 

  • Hirase S, Ikeda M (2015) Hybrid population of highly divergent groups of the intertidal goby Chaenogobius annularis. J Exp Mar Biol Ecol 473:121–128

    Google Scholar 

  • Hobday AJ, Pecl GT (2014) Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fish 24:415–425

    Google Scholar 

  • Hoshino N (2017) Migration of the Japanese yellowtail Seriola quinqueradiata in Hokkaido. Hokusuishi-dayori 94:1–4

    Google Scholar 

  • Kitamura A, Takano O, Takata H, Omote H (2001) Late Pliocene–early Pleistocene paleoceanographic evolution of the Sea of Japan. Palaeogeogr Palaeoclimatol Palaeoecol 172:81–98

    Google Scholar 

  • Kokita T, Nohara K (2011) Phylogeography and historical demography of the anadromous fish Leucopsarion petersii in relation to geological history and oceanography around the Japanese Archipelago. Mol Ecol 20:143–164

    PubMed  Google Scholar 

  • Koyama T, Nakamoto M, Morishima K, Yamashita R, Yamashita T, Sasaki K, Kuruma Y, Mizuno N, Suzuki M, Okada Y, Ieda R, Uchino T, Tasumi S, Hosoya S, Uno S, Koyama J, Toyoda A, Kikuchi K, Sakamoto T (2019) A SNP in a steroidogenic enzyme is associated with phenotypic sex in Seriola fishes. Curr Biol 29:1901–1909.e8

    CAS  PubMed  Google Scholar 

  • Kubota H, Furukawa S, Watari S (2019) Stock assessment and evaluation for yellowtail Seriola quinqueradiata (fiscal year 2018). In: Marine fisheries stock assessment and evaluation for Japanese waters (fiscal year 2018/2019). Fisheries Agency and Fisheries Research and Education Agency of Japan, Tokyo; Yokohama, pp 1364–1401. https://abchan.fra.go.jp/digests2018/details/201842.pdf

    Google Scholar 

  • Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin C, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375

    CAS  PubMed  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    PubMed  Google Scholar 

  • Mallet J, Beltrán M, Neukirchen W, Linares M (2007) Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol Biol 7:28

    PubMed  PubMed Central  Google Scholar 

  • Martinez-Takeshita N, Purcell CM, Chabot CL, Craig MT, Paterson CN, Hyde JR, Allen LG (2015) A tale of three tails: cryptic speciation in a globally distributed marine fish of the genus Seriola. Copeia 103:357–368

    Google Scholar 

  • Masuda R (2008) Seasonal and interannual variation of subtidal fish assemblages in Wakasa Bay with reference to the warming trend in the Sea of Japan. Environ Biol Fish 82:387–399

    Google Scholar 

  • Masuda Y, Shinohara N, Takahashi Y, Tabeta O, Matsuura K (1991) Occurrence of natural hybrid between pufferfishes, Takifugu xanthopterus and T. vermicularis, in Ariake Bay, Kyushu, Japan. Nippon Suisan Gakkaishi 57:1247–1255

    Google Scholar 

  • Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun 8:1–11

    Google Scholar 

  • Ministry of Education, Culture, Sports, Science and Technology and Japan Meteorological Agency (2020) Climate change in Japan 2020–evaluation report on the observation and forecast of atmosphere and land/ocean (detailed version). https://www.data.jma.go.jp/cpdinfo/ccj/2020/pdf/cc2020_shousai.pdf

  • Mirimin L, Kerwath SE, Macey BM, Bester-van der Merwe AE, Lamberth SJ, Bloomer P, Roodt-Wilding R (2014) Identification of naturally occurring hybrids between two overexploited sciaenid species along the South African coast. Mol Phylogenet Evol 76:30–33

    CAS  PubMed  Google Scholar 

  • Montanari SR, Hobbs JPA, Pratchett MS, Bay LK, Van Herwerden L (2014) Does genetic distance between parental species influence outcomes of hybridization among coral reef butterflyfishes? Mol Ecol 23:2757–2770

    CAS  PubMed  Google Scholar 

  • Mugo RM, Saitoh SI, Takahashi F, Nihira A, Kuroyama T (2014) Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: a proof of concept. Deep Sea Res Part II Top Stud Oceanogr 107:29–39

    CAS  Google Scholar 

  • Muto N, Kai Y, Noda T, Nakabo T (2013) Extensive hybridization and associated geographic trends between two rockfishes Sebastes vulpes and S. zonatus (Teleostei: Scorpaeniformes: Sebastidae). J Evol Biol 26:1750–1762

    CAS  PubMed  Google Scholar 

  • Nakashiki N, Tsubono T, Maruyama K (2005) Impact of global warming on ocean environment around Japan. Bull Coast Oceanogr 42:103–109

    Google Scholar 

  • Nielsen EEG, Bach LA, Kotlicki P (2006) HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973

    Google Scholar 

  • Oba T, Kato M, Kitazato H, Koizumi I, Omura A, Sakai T, Takayama T (1991) Paleoenvironmental changes in the Japan Sea during the last 85,000 years. Paleoceanography 6:499–518

    Google Scholar 

  • Onishi M, Ohtani K (1997) Volume transport of the Tsushima Warm Current, west of Tsugaru Strait bifurcation area. J Oceanogr 53:27–34

    Google Scholar 

  • Potts WM, Henriques R, Santos CV, Munnik K, Ansorge I, Dufois F, Booth AJ, Kirchner C, Sauer WHH, Shaw PW (2014) Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species. Glob Chang Biol 20:2765–2777

    PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Magnussen E, Jónsson B, Jiang X, Cheng L, Bekkevold D, Maes GE, Bernatchez L, Hansen MM (2014) Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms. Heredity 112:627–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan SF, Deines JM, Scriber JM, Pfrender ME, Jones SE, Emrich SJ, Hellmann JJ (2018) Climate-mediated hybrid zone movement revealed with genomics, museum collection, and simulation modeling. Proc Natl Acad Sci U S A 115:E2284–E2291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santini F, Nguyen MTT, Sorenson L, Waltzek TB, Lynch Alfaro JW, Eastman JM, Alfaro ME (2013) Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). J Evol Biol 26:1003–1018

    CAS  PubMed  Google Scholar 

  • Sassa C, Takahashi M, Konishi Y, Yoshimasa A, Tsukamoto Y (2020) The rapid expansion of yellowtail (Seriola quinqueradiata) spawning ground in the East China Sea is linked to increasing recruitment and spawning stock biomass. ICES J Mar Sci 77:581–592

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford Univ Press, Oxford

    Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:199–207

    Google Scholar 

  • Seehausen O, Takimoto G, Roy D, Jokela J (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17:30–44

    PubMed  Google Scholar 

  • Shiraishi T, Ohshimo S, Yukami R (2010) Age, growth and reproductive characteristics of gold striped amberjack Seriola lalandi in the waters off western Kyushu, Japan. New Zeal J Mar Fresh 44:117–127

    CAS  Google Scholar 

  • Shiraishi T, Ohshimo S, Yukami R (2011) Age, growth and reproductive characteristics of yellowtail (Seriola quinqueradiata) caught in the waters off western Kyushu. Bull Jpn Soc Fish Oceanogr 75:1–8

    Google Scholar 

  • Sugisaki H, Murakami K (2017) Impacts of climate change on the marine resources of Japan. In: Phillips BF, Pérez-Ramírez M (eds) Climate change impacts on fisheries and aquaculture: a global analysis, vol 1. Wiley, New York, NY, pp 121–128

    Google Scholar 

  • Tada R (1994) Paleoceanographic evolution of the Japan Sea. Palaeogeogr Palaeoclimatol Palaeoecol 108:487–508

    Google Scholar 

  • Tada R, Irino T, Koizumi I (1999) Land-ocean linkages over orbital and millennial timescales recorded in late Quaternary sediments of the Japan Sea. Paleoceanography 14:236–247

    Google Scholar 

  • Takahashi H, Takata K, Goto A (2001) Phylogeography of lateral plate dimorphism in the freshwater type of ninespine sticklebacks, genus Pungitius. Ichthyol Res 48:143–154

    Google Scholar 

  • Takahashi H, Møller PR, Shedko SV, Ramatulla T, Joen SR, Zhang CG, Sideleva VG, Takata K, Sakai H, Goto A, Nishida M (2016) Species phylogeny and diversification process of Northeast Asian Pungitius revealed by AFLP and mtDNA markers. Mol Phylogenet Evol 99:44–52

    PubMed  Google Scholar 

  • Takahashi H, Toyoda A, Yamazaki T, Narita S, Mashiko T, Yamazaki Y (2017) Asymmetric hybridization and introgression between sibling species of the pufferfish Takifugu that have undergone explosive speciation. Mar Biol 164:90

    Google Scholar 

  • Takahashi H, Kurogoushi T, Shimoyama R, Yoshikawa H (2021) First report of natural hybridization between two yellowtails, Seriola quinqueradiata and S. lalandi. Ichthyol Res 68:139–144

    Google Scholar 

  • Takizawa T (1982) Characteristics of the Soya warm current in the Okhotsk Sea. J Oceanogr Soc Jpn 38:281–292

    Google Scholar 

  • Tatsuno R, Miyata Y, Yoshikawa H, Ino Y, Fukuda T, Furushita M, Takahashi H (2019) Tetrodotoxin distribution in natural hybrids between the pufferfish species Takifugu rubripes and Takifugu porphyreus. Fish Sci 85:237–245

    CAS  Google Scholar 

  • Tian Y, Kidokoro H, Watanabe T, Igeta Y, Sakaji H, Ino S (2012) Response of yellowtail, Seriola quinqueradiata, a key large predatory fish in the Japan Sea, to sea water temperature over the last century and potential effects of global warming. J Mar Syst 91:1–10

    Google Scholar 

  • Vähä J, Primmer C (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridisation scenarios and with different numbers of loci. Mol Ecol 15:63–72

    PubMed  Google Scholar 

  • Van Der Bank H, Kirchner C (1997) Biochemical genetic markers to distinguish two sympatric and morphologically similar Namibian marine fish species, Argyrosomus coronus and Argyrosomus inodorus (Perciformes: Sciaenidae). J Afr Zool 111:441–448

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagawa T, Kuroda H, Ito S, Kakehi S, Yamanome T, Tanaka K, Endoh Y, Kaga S (2015) Variability in water properties and predictability of sea surface temperature along Sanriku coast, Japan. Cont Shelf Res 103:12–22

    Google Scholar 

  • Watanabe K, Sakai H, Sanada T, Nishida M (2018) Comparative phylogeography of diadromous and freshwater daces of the genus Tribolodon (Cyprinidae). Ichthyol Res 65:383–397

    Google Scholar 

  • Wirtz P (1999) Mother species–father species: unidirectional hybridization in animals with female choice. Anim Behav 58:1–12

    CAS  PubMed  Google Scholar 

  • Yamada U, Yagishita N (2013) Tetraodontidae. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species, 3rd edn. Tokai University Press, Hadano, pp 1728–1742. 2239–2241

    Google Scholar 

  • Yamamoto S, Morita K, Kitano S, Watanabe K, Koizumi I, Maekawa K, Takamura K (2004) Phylogeography of white-spotted charr (Salvelinus leucomaenis) inferred from mitochondrial DNA sequences. Zool Sci 21:229–240

    CAS  Google Scholar 

  • Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Tsukamoto N, Doi H, Takahashi H, Mabuchi K, Nishida M, Sakai H (2009) Explosive speciation of Takifugu: another use of fugu as a model system for evolutionary biology. Mol Biol Evol 26:623–629

    CAS  PubMed  Google Scholar 

  • Yokogawa K, Urayama K (2000) Natural hybrids between two species of puffer, Takifugu vermicularis and T. poecilonotus, obtained from the Seto Inland Sea, Japan. Jpn J Ichthyol 47:67–73

    Google Scholar 

  • Young WP, Ostberg CO, Keim P, Thorgaard GH (2001) Genetic characterization of hybridization and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Mol Ecol 10:921–930

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Naoto Itou (Kaniya Co., Ltd) and Takayuki Murakami (Zengyoren Foods Co., Ltd) for their useful information and to Tsuyoshi Mashiko, Yukio Yamazaki (Ibaraki Prefectural Fisheries Research Institute), and Hiroshi Terado (the fishing boat “Kanryou-maru”) for their cooperation and support of this study. This study was supported in part by JSPS KAKENHI (Nos. 19580229, 25440227, and 17H03629) and by Grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (the special scheme project on regional developing strategy, Project No. 16822337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, H. (2022). Recent Distributional Shifts and Hybridization in Marine Fishes of Japan. In: Kai, Y., Motomura, H., Matsuura, K. (eds) Fish Diversity of Japan. Springer, Singapore. https://doi.org/10.1007/978-981-16-7427-3_17

Download citation

Publish with us

Policies and ethics