Skip to main content

Base Criterion Method (BCM)

Part of the Studies in Systems, Decision and Control book series (SSDC,volume 407)

Abstract

The base criterion method (BCM) is one of the latest MCDM methods introduced to obtain the weight of the criteria. This method was introduced in 2020 by Haseli et al. The BCM method uses the pairwise comparison approach to obtain the weight of the criteria. This method removes a large number of unnecessary comparisons by dividing pairwise comparisons into two categories: base comparisons and final comparisons. To obtain the weight of the criteria with the BCM method, only base comparisons are needed. In the base comparisons for n criteria, n − 1 pairwise comparisons need to be performed. The results in the BCM method will be fully consistent because instead of the controlling outputs of the pairwise comparisons to measure the inconsistency, the BCM method controls the inputs of pairwise comparisons. By controlling the input values of pairwise comparisons, there will be no more errors in the process of obtaining weights. The zero error accuracy means optimal and full consistent weights. Therefore, the BCM method can obtain the optimal weight of the criteria quite accurately. Also, it is required to perform fewer pairwise comparisons compared to the other existing MCDM methods. In this chapter, examples are provided to become more familiar with the problem-solving process for obtaining the weight of criteria using the BCM method.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-7414-3_2
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-7414-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. Zavadskas, E.K., Antucheviciene, J., Hajiagha, S.H., Hashemi, S.S.: Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Appl. Soft Comput. 24, 1013–1021 (2014)

    CrossRef  Google Scholar 

  2. Guo, S., Zhao, H.: Fuzzy best-worst multi-criteria decision-making method and its applications. Knowl.-Based Syst. 121, 23–31 (2017)

    CrossRef  Google Scholar 

  3. Kahraman, C., Onar, S.C., Oztaysi, B.: Fuzzy multicriteria decision-making: a literature review. Int. J. Comput. Intell. Syst. 8(4), 637–666 (2015)

    CrossRef  Google Scholar 

  4. Mardani, A., Nilashi, M., Zavadskas, E.K., Awang, S.R., Zare, H., Jamal, N.M.: Decision making methods based on fuzzy aggregation operators: Three decades review from 1986 to 2017. Int. J. Inf. Technol. Decis. Mak. 17(02), 391–466 (2018)

    CrossRef  Google Scholar 

  5. Liao, H., Wu, X., Liang, X., Xu, J., Herrera, F.: A new hesitant fuzzy linguistic ORESTE method for hybrid multicriteria decision making. IEEE Trans. Fuzzy Syst. 26(6), 3793–3807 (2018)

    CrossRef  Google Scholar 

  6. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015)

    CrossRef  Google Scholar 

  7. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234–281 (1977)

    MathSciNet  CrossRef  Google Scholar 

  8. Saaty, T.L.: Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS publications (2005)

    Google Scholar 

  9. Rezaei, J.: Best-worst multi-criteria decision-making method: some properties and a linear model. Omega 64, 126–130 (2016)

    CrossRef  Google Scholar 

  10. Haseli, G., Sheikh, R., Sana, S.S.: Base-criterion on multi-criteria decision-making method and its applications. Int. J. Manage. Sci. Eng. Manage. 15(2), 79–88 (2020)

    Google Scholar 

  11. Haseli, G., Sheikh, R., Sana, S.S.: Extension of base-criterion method based on fuzzy set theory. Int. J. Appl. Comput. Math. 6, 54 (2020)

    MathSciNet  CrossRef  Google Scholar 

  12. Saaty, T.L.: What is the Analytic Hierarchy Process? In: Mathematical Models for ,rt, pp. 109–121. Springer, Berlin, Heidelberg (1988)

    Google Scholar 

  13. Thurstone, L.L.: A law of comparative judgment. Psychol. Rev. 34(4), 273 (1927)

    CrossRef  Google Scholar 

  14. Herman, M.W., Koczkodaj, W.W.: A Monte Carlo study of parwise comparison. Inf. Process. Lett. 57(1), 25–29 (1996)

    CrossRef  Google Scholar 

  15. Forman, E.H., Selly, M.A.: Decision by Objectives: How to Convince Others that you are Right. World Scientific (2001)

    CrossRef  Google Scholar 

  16. Ishizaka, A., Nguyen, N.H.: Calibrated fuzzy AHP for current bank account selection. Expert Syst. Appl. 40(9), 3775–3783 (2013)

    CrossRef  Google Scholar 

  17. Dong, J., Wan, S., Chen, S.M.: Fuzzy best-worst method based on triangular fuzzy numbers for multi-criteria decision-making. Inf. Sci. 547, 1080–1104 (2020)

    MathSciNet  CrossRef  Google Scholar 

  18. Liang, F., Brunelli, M., Rezaei, J.: Consistency issues in the best worst method: measurements and thresholds. Omega 96, 102175 (2020)

    Google Scholar 

  19. Harker, P.T.: Alternative modes of questioning in the analytic hierarchy process. Math. Model. 9(3–5), 353–360 (1987)

    MathSciNet  CrossRef  Google Scholar 

  20. Fei, L., Lu, J., Feng, Y.: An extended best-worst multi-criteria decision-making method by belief functions and its applications in hospital service evaluation. Comput. Ind. Eng. 142, 106355 (2020)

    Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, pp. 394–432 (1965)

    Google Scholar 

  22. Rashidi, K., Cullinane, K.: A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy. Expert Syst. Appl. 121, 266–281 (2019)

    CrossRef  Google Scholar 

  23. Rezaei, J.: Piecewise linear value functions for multi-criteria decision-making. Expert Syst. Appl. 98, 43–56 (2018)

    CrossRef  Google Scholar 

  24. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9–26 (1990)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Haseli, G., Sheikh, R. (2022). Base Criterion Method (BCM). In: Kulkarni, A.J. (eds) Multiple Criteria Decision Making. Studies in Systems, Decision and Control, vol 407. Springer, Singapore. https://doi.org/10.1007/978-981-16-7414-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7414-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7413-6

  • Online ISBN: 978-981-16-7414-3

  • eBook Packages: EngineeringEngineering (R0)