Skip to main content

A State-of-the-Art Review for Product Engineering Design for Sustainability Focusing on Aims and Methodologies

  • Conference paper
  • First Online:
Advances in Mechanical Design (ICMD 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 111))

Included in the following conference series:

  • 4027 Accesses

Abstract

With more stringent environmental laws and regulations in various countries, people become more aware of the need for environmental protection and sustainable development. Design for sustainability (D4S) or sustainable design is seen as a fierce requirement for the research and development of products and engineering system. A systematic review for product engineering design for sustainability was presented focusing on the aims and methods of the work. After interesting statistical analysis for the selected articles in refined literature set, the research state-of-the-art for D4S was analyzed through design for environment, green modularization, design for disassembly, design for recycling and material selection categories. The sub-techniques and metrics supporting D4S studies were extracted as tool lists for solving sustainable design problems. Future research for D4S was predicted as the eco-impact analysis for specific problems, all-in-one sustainable design, sustainable platform and product family design, and the sustainable design for resource efficiency. Contributions of this work lie in its hierarchical framework to illustrate the purpose and method of articles in various D4S categories for understanding the contemporary stage in sustainable design and its future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crul, M., Diehl, J.C., Ryan, C.: Design for Sustainability: A Step by Step Approach. UNEP, Paris (2009)

    Google Scholar 

  2. Gungor, A., Gupta, S.M.: Issues in environmentally conscious manufacturing and product recovery: A survey. Comput. Ind. Eng. 36(4), 811–853 (1999)

    Article  Google Scholar 

  3. Santolaria, M., Oliver-Sola, J., Gasol, C.M., et al.: Eco-design in innovation driven companies: perception, predictions and the main drivers of integration. The Spanish example. J. Cleaner Prod. 19(12), 1315–1323 (2011)

    Google Scholar 

  4. Ahmad, S., Wong, K.Y., Tseng, M.L., et al.: Sustainable product design and development: a review of tools, applications and research prospects. Resour. Conserv. Recycl. 132: 49–61 (2018)

    Google Scholar 

  5. Su, J.C.P., Chu, C.H., Wang, Y.T.: A decision support system to estimate the carbon emission and cost of product designs. Int. J. Precis. Eng. Manuf. 13(7): 1037–1045 (2012)

    Google Scholar 

  6. Anzanello, M.J., Fogliatto, F.S.: Selecting the best clustering variables for grouping mass-customized products involving workers’ learning. Int. J. Prod. Econ. 130(2), 268–276 (2011)

    Article  Google Scholar 

  7. Ma. J., Kremer, G.E.O.: A Modular Product Design Method to Improve Product Social Sustainability Performance, pp. 1–10 (2015)

    Google Scholar 

  8. Zhang, L., Jiang, R., Jin, Z.-F., et al.: CAD-based identification of product low-carbon design optimization potential: A case study of low-carbon design for automotive in China. Int. J. Adv. Manuf. Technol. 100(1–4), 751–769 (2019)

    Google Scholar 

  9. Sabaghi, M., Mascle, C., Baptiste, P.: Evaluation of products at design phase for an efficient disassembly at end-of-life. J. Cleaner Prod. 116, 177–186 (2016)

    Google Scholar 

  10. Tian, J., Chen, M.: Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles. Waste Manag. 34(2), 458–467 (2014)

    Google Scholar 

  11. Mousavi-Nasab, S.H., Sotoudeh-Anvari, A.: A new multi-criteria decision making approach for sustainable material selection problem: A critical study on rank reversal problem. J. Cleaner Prod. 182, 466–484 (2018)

    Google Scholar 

  12. Qian, X.Q., Zhang, H.C.: Design for environment: An environmentally conscious analysis model for modular design. IEEE Trans. Electron. Packag. Manuf. 32(3), 164–175 (2009)

    Google Scholar 

  13. Sivaprasad, K., Nandakumar, C.G.: Design for ship recycling. Ships Offshore Struct. 8(2), 214–223 (2013)

    Google Scholar 

  14. Reuter, M., Van Schaik, A.: Opportunities and limits of recycling: A dynamic-model-based analysis. MRS Bull. 37(4), 339–347 (2012)

    Google Scholar 

  15. Huang, H.H., Liu, Z.F., Zhang, L., et al.: Materials selection for environmentally conscious design via a proposed life cycle environmental performance index. Int. J. Adv. Manuf. Technol. 44(11–12), 1073–1082 (2009)

    Google Scholar 

  16. Yang, Q.Y., Yu, S.R., Jiang, D.: A modular method of developing an eco-product family considering the reusability and recyclability of customer products. J. Cleaner Prod. 64, 254–265 (2014)

    Google Scholar 

  17. Favi, C., Germani, M., Marconi, M., et al.: Innovative software platform for eco-design of efficient electric motors. J. Cleaner Prod. 37, 125–134 (2012)

    Google Scholar 

  18. Ilgin, M.A., Gupta, S.M.: Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. J. Environ. Manag. 91(3), 563–591 (2010)

    Google Scholar 

  19. Martínez-Jurado, P.J., Moyano-Fuentes, J.: Lean management, supply chain management and sustainability: a literature review. J. Cleaner Prod. 85, 134–150 (2014)

    Google Scholar 

  20. Ramani, K., Ramanujan, D., Bernstein, W.Z., et al.: Integrated sustainable life cycle design: A review. J. Mech. Des. 132(9), 1–15 (2010)

    Google Scholar 

  21. Chiu, M.-C., Chu, C.-H.: Review of sustainable product design from life cycle perspectives. Int. J. Precis. Eng. Manuf. 13(7), 1259–1272 (2012)

    Google Scholar 

  22. Ceschin, F., Gaziulusoy, I.: Evolution of design for sustainability: From product design to design for system innovations and transitions. Des. Stud. 47, 118–163 (2016)

    Google Scholar 

  23. Iacob, R., Popescu, D., Mitrouchev, P.: Assembly or disassembly analysis and modeling techniques: A review. Strojniski Vestnik-J. Mech. Eng. 58(11), 653–664 (2012)

    Google Scholar 

  24. Ramalhete, P.S., Senos, A.M.R., Aguiar, C.: Digital tools for material selection in product design. Mater. Des. 31(5), 2275–2287 (2010)

    Google Scholar 

  25. Appolloni, A., Sun, H., Jia, F., et al.: Green procurement in the private sector: A state of the art review between 1996 and 2013. J. Cleaner Prod. 85, 122–133 (2014)

    Google Scholar 

  26. Go, T.F., Wahab, D.A., Hishamuddin, H.: Multiple generation life-cycles for product sustainability: The way forward. J. Cleaner Prod. 95, 16–29 (2015)

    Google Scholar 

  27. Sonego, M., Echeveste, M.E.S., Galvan Debarba, H.: The role of modularity in sustainable design: A systematic review. J. Cleaner Prod. 176, 196–209 (2018)

    Google Scholar 

  28. Li, Z., Gómez, J.M., Pehlken, A.: A systematic review for environmentally conscious product design. In: 29th International Conference on Informatics for Environmental Protection (EnviroInfo 2015) Third International Conference on ICT for Sustainability (ICT4S 2015) (2015)

    Google Scholar 

  29. Li, Z., Gómez, J.M.: Modeling for sustainable product development strategies with general morphological analysis. Lecture Notes Inf. (LNI) (2015)

    Google Scholar 

  30. Xie, Y.: Design Science and Design Competitiveness. Science Press, Beijing (in Chinese) (2019)

    Google Scholar 

  31. Li, J., Zeng, X., Stevels, A.: Ecodesign in consumer electronics: Past, present, and future. Crit. Rev. Environ. Sci. Technol. 45(8), 840–860 (2015)

    Google Scholar 

  32. Fitzpatrick, C., Hickey, S., Schischke, K., et al.: Sustainable life cycle engineering of an integrated desktop PC; A small to medium enterprise perspective. J. Cleaner Prod. 74, 155–160 (2014)

    Google Scholar 

  33. Lin, K.H., Shih, L.H., Lee, S.C.: Optimization of product line design for environmentally conscious technologies in notebook industry. Int. J. Environ. Sci. Technol. 7(3), 473–484 (2010)

    Google Scholar 

  34. Vinodh, S., Rathod, G.: Integration of ECQFD and LCA for sustainable product design. J. Cleaner Prod. 18(8), 833–842 (2010)

    Google Scholar 

  35. Chiang, T.-A., Che, Z.H., Wang, T.-T.: A design for environment methodology for evaluation and improvement of derivative consumer electronic product development. J. Syst. Sci. Syst. Eng. 20(3), 260–274 (2011)

    Google Scholar 

  36. Fernandes, P.T., Canciglieri Júnior, O., Sant’anna, Â.M.O.: Method for integrated product development oriented to sustainability. Clean Technol. Environ. Policy 19(3), 775–793 (2017)

    Google Scholar 

  37. Vinodh, S., Kamala, V., Jayakrishna, K.: Integration of ECQFD, TRIZ, and AHP for innovative and sustainable product development. Appl. Math. Model. 38(11–12), 2758–2770 (2014)

    Google Scholar 

  38. Wang X, Chan H K, White L. A comprehensive decision support model for the evaluation of eco-designs. J. Oper. Res. Soc. 65(6), 917–934 (2014)

    Google Scholar 

  39. Keivanpour, S., Ait Kadi, D.: Strategic eco-design map of the complex products: Toward visualisation of the design for environment. Int. J. Prod. Res. 56(24), 7296–7312 (2018)

    Google Scholar 

  40. He, B., Luo, T., Huang, S.: Product sustainability assessment for product life cycle. J. Cleaner Prod. 206, 238–250 (2019)

    Google Scholar 

  41. Vinodh, S.: Environmental conscious product design using CAD and CAE. Clean Technol. Environ. Policy 13(2), 359–367 (2011)

    Article  Google Scholar 

  42. Gaha, R., Yannou, B., Benamara, A.: A new eco-design approach on CAD systems. Int. J. Precis. Eng. Manuf. 15(7), 1443–1451 (2014)

    Google Scholar 

  43. Li, Z.K., Cheng, Z.H., Feng, Y.X., et al.: An integrated method for flexible platform modular architecture design. J. Eng. Des. 24(1), 25–44 (2013)

    Article  Google Scholar 

  44. Li, Z., Wang, S., Yin, W.: Determining optimal granularity level of modular product with hierarchical clustering and modularity assessment. J. Braz. Soc. Mech. Sci. Eng. 41(8), 342–356 (2019)

    Article  Google Scholar 

  45. Li, Z.K., Pehlken, A., Qian, H.T., et al.: A systematic adaptable platform architecture design methodology for early product development. J. Eng. Des. 27(1–3), 93–117 (2016)

    Article  Google Scholar 

  46. Li, Z., Miao, L., Song, Y.: Modular combination design of mine rescue capsule based on load simulation. J. Donghua Univ. (English Edn.) 36(2), 117–128 (2019)

    Google Scholar 

  47. Yu, S.R., Yang, Q.Y., Tao, J., et al.: Product modular design incorporating life cycle issues—Group Genetic Algorithm (GGA) based method. J. Cleaner Prod. 19(9–10), 1016–1032 (2011)

    Google Scholar 

  48. Yan, J.H., Feng, C.H.: Sustainable design-oriented product modularity combined with 6R concept: a case study of rotor laboratory bench. Clean Technol. Environ. Policy 16(1), 95–109 (2013)

    Google Scholar 

  49. Ji, Y.J., Chen, X.B., Qi, G.N., et al.: Modular design involving effectiveness of multiple phases for product life cycle. Int. J. Adv. Manuf. Technol. 66(9–12), 1475–1488 (2012)

    Google Scholar 

  50. Ji, Y., Jiao, R.J., Chen, L., et al.: Green modular design for material efficiency: A leader–follower joint optimization model. J. Cleaner Prod. 41, 187–201 (2013)

    Google Scholar 

  51. Yang, Q.Y., Yu, S.R., Sekhari, A.: A modular eco-design method for life cycle engineering based on redesign risk control. Int. J. Adv. Manuf. Technol. 56(9–12), 1215–1233 (2011)

    Google Scholar 

  52. Chang, T.R., Wang, C.S., Wang, C.C.: A systematic approach for green design in modular product development. Int. J. Adv. Manuf. Technol. 68(9–12), 2729–2741 (2013)

    Google Scholar 

  53. Smith, S., Yen, C.C.: Green product design through product modularization using atomic theory. Robot. Comput.-Integr. Manuf. 26(6), 790–798 (2010)

    Google Scholar 

  54. You, Z.-H., Smith, S.: A multi-objective modular design method for creating highly distinct independent modules. Res. Eng. Des. 27(2), 179–191 (2016)

    Google Scholar 

  55. Qiu, L.M., Liu, X.J., Zhang, S.Y., et al.: Disassemblability modeling technology of configurable product based on disassembly constraint relation weighted design structure matrix (DSM). Chin. J. Mech. Eng. 27(3), 511–519 (2014)

    Article  Google Scholar 

  56. Tian, G.D., Liu, Y.M., Tian, Q.Z., et al.: Evaluation model and algorithm of product disassembly process with stochastic feature. Clean Technol. Environ. Policy 14(2), 345–356 (2012)

    Article  Google Scholar 

  57. Smith, S., Hung, P.-Y.: A novel selective parallel disassembly planning method for green design. J. Eng. Des. 26(10–12), 283–301 (2015)

    Google Scholar 

  58. Vinodh, S., Nachiappan, N., Praveen Kumar, R.: Sustainability through disassembly modeling, planning, and leveling: a case study. Clean Technol. Environ. Policy 14(1), 55–67 (2011)

    Google Scholar 

  59. Rickli, J.L., Camelio, J.A.: Multi-objective partial disassembly optimization based on sequence feasibility. J. Manuf. Syst. 32(1), 281–293 (2013)

    Google Scholar 

  60. Tao, F., Bi, L., Zuo, Y., et al.: Partial/parallel disassembly sequence planning for complex products. J. Manuf. Sci. Eng. 140(1), 011016 (2017)

    Google Scholar 

  61. Jiang, H., Yi, J., Zhu, X., et al.: Generating disassembly tasks for selective disassembly using ontology-based disassembly knowledge representation. Assembly Autom. 38(2), 113–124 (2018)

    Google Scholar 

  62. Ma, Y.S., Jun, H.B., Kim, H.W., et al.: Disassembly process planning algorithms for end-of-life product recovery and environmentally conscious disposal. Int. J. Prod. Res. 49(23), 7007–7027 (2011)

    Google Scholar 

  63. Harivardhini, S., Chakrabarti, A.: A new model for estimating End-of-Life disassembly effort during early stages of product design. Clean Technol. Environ. Policy 18(5), 1585–1598 (2016)

    Google Scholar 

  64. Mesa, J.A., Esparragoza, I., Maury, H.: Development of a metric to assess the complexity of assembly/disassembly tasks in open architecture products. Int. J. Prod. Res. 56(24), 7201–7219 (2017)

    Google Scholar 

  65. Chang, H.T., Lu, C.H.: Simultaneous evaluations of material toxicity and ease of disassembly during electronics design integrating environmental assessments with commercial computer-aided design software. J. Ind. Ecol. 18(4), 478–490 (2014)

    Google Scholar 

  66. Zhu, L., Zhang, Z., Wang, Y.: A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation. Int. J. Prod. Res. 56(24), 7354–7374 (2018)

    Google Scholar 

  67. Perry, N., Bernard, A., Laroche, F., et al.: Improving design for recycling—Application to composites. CIRP Ann. Manuf. Technol. 61(1), 151–154 (2012)

    Article  Google Scholar 

  68. Sakundarini, N., Taha, Z., Abdul-Rashid, S.H., et al.: Incorporation of high recyclability material selection in computer aided design. Mater. Des. 56, 740–749 (2014)

    Google Scholar 

  69. Umeda, Y., Fukushige, S., Mizuno, T., et al.: Generating design alternatives for increasing recyclability of products. CIRP Ann. Manuf. Technol. 62(1), 135–138 (2013)

    Google Scholar 

  70. De Aguiar, J., De Oliveira, L., Da Silva, J.O., et al. A design tool to diagnose product recyclability during product design phase. J. Cleaner Prod. 141, 219–229 (2017)

    Google Scholar 

  71. Cheung, W.M., Marsh, R., Griffin, P.W., et al.: Towards cleaner production: a roadmap for predicting product end-of-life costs at early design concept. J. Cleaner Prod. 87, 431–441 (2015)

    Google Scholar 

  72. Joshi, A.D., Gupta, S.M.: Evaluation of design alternatives of end-of-life products using internet of things. Int. J. Prod. Econ. 208, 281–293 (2019)

    Google Scholar 

  73. Ameli, M., Mansour, S., Ahmadi-Javid, A.: A simulation-optimization model for sustainable product design and efficient end-of-life management based on individual producer responsibility. Resour. Conserv. Recycl. 140, 246–258 (2019)

    Google Scholar 

  74. Gao, Y., Feng, Y., Wang, Q., et al.: A multi-objective decision making approach for dealing with uncertainty in EOL product recovery. J. Cleaner Prod. 204, 712–725 (2018)

    Google Scholar 

  75. Prendeville, S., O’Cconnor, F., Palmer, L.: Material selection for eco-innovation: SPICE model. J. Cleaner Prod. 85, 31–40 (2014)

    Google Scholar 

  76. Qiu, L.-M., Sun, L.-F., Liu, X.-J., et al.: Material selection combined with optimal structural design for mechanical parts. J. Zhejiang Univ. Sci. A 14(6), 383–392 (2013)

    Google Scholar 

  77. Sakundarini, N., Taha, Z., Abdul-Rashid, S.H., et al.: Optimal multi-material selection for lightweight design of automotive body assembly incorporating recyclability. Mater. Des. 50, 846–857 (2013)

    Article  Google Scholar 

  78. Kuo, T., Lee, Y.: Using Pareto optimization to support supply chain network design within environmental footprint impact assessment. Sustainability 11(2), 452–465 (2019)

    Google Scholar 

  79. Calado, E.A., Leite, M., Silva, A.: Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design. J. Cleaner Prod. 186, 113–122 (2018)

    Google Scholar 

  80. Hallstedt, S.I., Isaksson, O.: Material criticality assessment in early phases of sustainable product development. J. Cleaner Prod. 161, 40–52 (2017)

    Google Scholar 

  81. Ma, F.W., Zhao, Y., Pu, Y.F., et al.: A comprehensive multi-criteria decision making model for sustainable material selection considering life cycle assessment method. IEEE Access 6, 58338–58354 (2018)

    Google Scholar 

  82. Manjunatheshwara, K.J., Vinodh, S.: Grey-based decision-making method for sustainable material selection of tablet device enclosure. Clean Technol. Environ. Policy 20(10), 2345–2356 (2018)

    Google Scholar 

  83. Zarandi, M.H.F., Mansour, S., Hosseinijou, S.A., et al.: A material selection methodology and expert system for sustainable product design. Int. J. Adv. Manuf. Technol. 57(9–12), 885–903 (2011)

    Google Scholar 

  84. Tambouratzis, T., Karalekas, D., Moustakas, N.: A methodological study for optimizing material selection in sustainable product design. J. Ind. Ecol. 18(4), 508–516 (2014)

    Article  Google Scholar 

  85. Li, Z., Zhu, Z., Xie, L., et al.: Generic performance trading-off evaluation on parametric product family. Chin. J. Constr. Machinary 8(1), 35–40 (2010). (in Chinese)

    Google Scholar 

  86. Rebitzer, G., Ekvall, T., Frischknecht, R., et al.: Life cycle assessment part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30(5), 701–720 (2004)

    Article  Google Scholar 

  87. Badurdeen, F., Aydin, R., Brown, A.: A multiple lifecycle-based approach to sustainable product configuration design. J. Cleaner Prod. 200, 756–769 (2018)

    Article  Google Scholar 

  88. Chiang, T.A., Roy, R.: An intelligent benchmark-based design for environment system for derivative electronic product development. Comput. Ind. 63(9), 913–929 (2012)

    Article  Google Scholar 

  89. Zhang, L., Zhan, Y., Liu, Z.F., et al.: Development and analysis of design for environment oriented design parameters. J. Cleaner Prod. 19(15), 1723–1733 (2011)

    Article  Google Scholar 

  90. Simpson, T.W., Bobuk, A., Slingerland, L.A., et al.: From user requirements to commonality specifications: An integrated approach to product family design. Res. Eng. Design 23(2), 141–153 (2011)

    Article  Google Scholar 

  91. Wei, W., Wang, P.: Scale-Based product family optimization design based on the improved AMPSO in selecting optimum strategy. Robotics Comput. Integr. Manuf. 57, 370–378 (2019)

    Article  Google Scholar 

  92. Gershenson, J.K., Prasad, G.J., Zhang, Y.: Product modularity: Definitions and benefits. J. Eng. Des. 14(3), 295–313 (2003)

    Article  Google Scholar 

  93. Fogliatto, F.S., da Silveira, G.J.C., Borenstein, D.: The mass customization decade: An updated review of the literature. Int. J. Prod. Econ. 138(1), 14–25 (2012)

    Article  Google Scholar 

  94. Jung, S., Simpson, T.W.: An integrated approach to product family redesign using commonality and variety metrics. Res. Eng. Design 27(4), 391–412 (2016)

    Article  Google Scholar 

  95. Du, G., Xia, Y., Jiao, R.J., et al.: Leader-follower joint optimization problems in product family design. J. Intell. Manuf. 30(3), 1387–1405 (2019)

    Article  Google Scholar 

  96. Fröhling, M., Schwaderer, F., Bartusch, H., et al.: A material flow-based approach to enhance resource efficiency in production and recycling networks. J. Ind. Ecol. 17(1), 5–19 (2013)

    Article  Google Scholar 

  97. Pehlken, A., Decker, A., Kottowski, C., et al.: Energy efficiency in processing of natural raw materials under consideration of uncertainties. J. Cleaner Prod. 106, 351–363 (2015)

    Article  Google Scholar 

  98. Umeda, Y., Fukushige, S., Tonoike, K.: Evaluation of scenario-based modularization for lifecycle design. CIRP Ann. Manuf. Technol. 58(1), 1–4 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51475459), and Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD). We thank Dr. Lei Miao at Zhejiang University, China, master student Xinxin Wang, Ran Sun, and Haokun Ma at School of Mechatronics Engineering, China University of Mining and Technology, for their work on the context, and also for the constructive comments of the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-kai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Zk., Wang, S. (2022). A State-of-the-Art Review for Product Engineering Design for Sustainability Focusing on Aims and Methodologies. In: Tan, J. (eds) Advances in Mechanical Design. ICMD 2021. Mechanisms and Machine Science, vol 111. Springer, Singapore. https://doi.org/10.1007/978-981-16-7381-8_65

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7381-8_65

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7380-1

  • Online ISBN: 978-981-16-7381-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics