Skip to main content

Stargardt Macular Dystrophy

  • Chapter
  • First Online:
Inherited Retinal Disease

Abstract

Stargardt disease 1 (STGD1; MIM 248200), which is the most prevalent inherited macular dystrophy, is an autosomal recessive condition caused by pathogenic variants in the ABCA4 gene (ATP-binding cassette subfamily A member 4; MIM 601691). Over the last two decades, clinical and molecular genetic studies of STGD1/ABCA4 have been intensively conducted worldwide and an understanding of the pathophysiology promotes clinical therapeutic trials. In this review, we describe clinical manifestations, genetic characteristics, pathophysiology, and treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stargardt K. Über familiäre, progressive Degeneration in der Maculagegend des Auges. Graefes Arch Clin Exp Ophthalmol. 1909;71:534–50.

    Google Scholar 

  2. Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular dystrophies. J Med Genet. 2003;40(9):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101(1):25–30.

    Article  PubMed  Google Scholar 

  4. Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res. 2020;79:100861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pontikos N, Arno G, Jurkute N, Schiff E, Ba-Abbad R, Malka S, et al. Genetic basis of inherited retinal disease in a molecularly characterized cohort of more than 3000 families from the United Kingdom. Ophthalmology. 2020;127(10):1384–94.

    Article  PubMed  Google Scholar 

  6. Stone EM, Andorf JL, Whitmore SS, DeLuca AP, Giacalone JC, Streb LM, et al. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology. 2017;124(9):1314–31.

    Article  PubMed  Google Scholar 

  7. Liu X, Fujinami YY, Yang L, Arno G, Fujinami K. Stargardt disease in asian population. Advances in vision research, vol. II. Singapore: Springer; 2019. p. 279–95.

    Google Scholar 

  8. Burke TR, Tsang SH. Allelic and phenotypic heterogeneity in ABCA4 mutations. Ophthalmic Genet. 2011;32(3):165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blacharski P. Retinal dystrophies and degenerations. New York: Raven; 1988.

    Google Scholar 

  10. Fujinami K, Lois N, Davidson AE, Mackay DS, Hogg CR, Stone EM, et al. A longitudinal study of Stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations. Am J Ophthalmol. 2013;155(6):1075–88.e13.

    Google Scholar 

  11. Fujinami K, Lois N, Mukherjee R, McBain VA, Tsunoda K, Tsubota K, et al. A longitudinal study of Stargardt disease: quantitative assessment of fundus autofluorescence, progression, and genotype correlations. Invest Ophthalmol Vis Sci. 2013;54(13):8181–90.

    Article  PubMed  Google Scholar 

  12. Fishman GA. Fundus flavimaculatus. A clinical classification. Arch Ophthalmol. 1976;94(12):2061–7.

    Article  CAS  PubMed  Google Scholar 

  13. Fishman GA, Stone EM, Grover S, Derlacki DJ, Haines HL, Hockey RR. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol. 1999;117(4):504–10.

    Article  CAS  PubMed  Google Scholar 

  14. Fujinami K, Zernant J, Chana RK, Wright GA, Tsunoda K, Ozawa Y, et al. Clinical and molecular characteristics of childhood-onset Stargardt disease. Ophthalmology. 2015;122(2):326–34.

    Article  PubMed  Google Scholar 

  15. Lois N, Holder GE, Bunce C, Fitzke FW, Bird AC. Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus. Arch Ophthalmol. 2001;119(3):359–69.

    Article  CAS  PubMed  Google Scholar 

  16. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet. 2001;108(4):346–55.

    Article  CAS  PubMed  Google Scholar 

  17. Fujinami K, Sergouniotis PI, Davidson AE, Mackay DS, Tsunoda K, Tsubota K, et al. The clinical effect of homozygous ABCA4 alleles in 18 patients. Ophthalmology. 2013;120(11):2324–31.

    Article  PubMed  Google Scholar 

  18. Fakin A, Robson AG, Chiang JP, Fujinami K, Moore AT, Michaelides M, et al. The effect on retinal structure and function of 15 specific ABCA4 Mutations: a detailed examination of 82 hemizygous patients. Invest Ophthalmol Vis Sci. 2016;57(14):5963–73.

    Article  CAS  PubMed  Google Scholar 

  19. Fakin A, Robson AG, Fujinami K, Moore AT, Michaelides M, Pei-Wen Chiang J, et al. Phenotype and progression of retinal degeneration associated with nullizigosity of ABCA4. Invest Ophthalmol Vis Sci. 2016;57(11):4668–78.

    Article  CAS  PubMed  Google Scholar 

  20. Khan KN, Kasilian M, Mahroo OAR, Tanna P, Kalitzeos A, Robson AG, et al. Early patterns of macular degeneration in ABCA4-associated retinopathy. Ophthalmology. 2018;125(5):735–46.

    Article  PubMed  Google Scholar 

  21. Mahroo OA, Fujinami K, Moore AT, Webster AR. Retinal findings in a patient with mutations in ABCC6 and ABCA4. Eye (Lond). 2018;32(9):1542–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Georgiou M, Kane T, Tanna P, Bouzia Z, Singh N, Kalitzeos A, et al. Prospective cohort study of childhood-onset Stargardt disease: fundus autofluorescence imaging, progression, comparison with adult-onset disease, and disease symmetry. Am J Ophthalmol. 2020;211:159–75.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tanna P, Georgiou M, Strauss RW, Ali N, Kumaran N, Kalitzeos A, et al. Cross-sectional and longitudinal assessment of the ellipsoid zone in childhood-onset Stargardt disease. Transl Vis Sci Technol. 2019;8(2):1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singh R, Fujinami K, Chen LL, Michaelides M, Moore AT. Longitudinal follow-up of siblings with a discordant Stargardt disease phenotype. Acta Ophthalmol. 2014;92(4):e331–2.

    Article  PubMed  Google Scholar 

  25. Fujinami K, Singh R, Carroll J, Zernant J, Allikmets R, Michaelides M, et al. Fine central macular dots associated with childhood-onset Stargardt disease. Acta Ophthalmol. 2014;92(2):e157–9.

    Article  PubMed  Google Scholar 

  26. Fujinami K, Sergouniotis PI, Davidson AE, Wright G, Chana RK, Tsunoda K, et al. Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function. Am J Ophthalmol. 2013;156(3):487–501. e1

    Article  CAS  PubMed  Google Scholar 

  27. Fujinami K, Akahori M, Fukui M, Tsunoda K, Iwata T, Miyake Y. Stargardt disease with preserved central vision: identification of a putative novel mutation in ATP-binding cassette transporter gene. Acta Ophthalmol. 2011;89(3):e297–8.

    Article  PubMed  Google Scholar 

  28. Schonbach EM, Strauss RW, Munoz B, Wolfson Y, Ibrahim MA, Birch DG, et al. Longitudinal microperimetric changes of macular sensitivity in Stargardt disease after 12 months: ProgStar Report No. 13. JAMA Ophthalmol. 2020;138(7):772–9.

    Article  PubMed  Google Scholar 

  29. Schonbach EM, Strauss RW, Ibrahim MA, Janes JL, Birch DG, Cideciyan AV, et al. Faster sensitivity loss around dense scotomas than for overall macular sensitivity in Stargardt disease: ProgStar Report No. 14. Am J Ophthalmol. 2020;216:219–25.

    Article  CAS  PubMed  Google Scholar 

  30. Strauss RW, Kong X, Ho A, Jha A, West S, Ip M, et al. Progression of Stargardt disease as determined by fundus autofluorescence over a 12-month period: ProgStar Report No. 11. JAMA Ophthalmol. 2019;137(10):1134–45.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kong X, Fujinami K, Strauss RW, Munoz B, West SK, Cideciyan AV, et al. Visual acuity change over 24 months and its association with foveal phenotype and genotype in individuals with Stargardt disease: ProgStar Study Report No. 10. JAMA Ophthalmol. 2018;136(8):920–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schonbach EM, Strauss RW, Kong X, Munoz B, Ibrahim MA, Sunness JS, et al. Longitudinal changes of fixation location and stability within 12 months in Stargardt disease: ProgStar Report No. 12. Am J Ophthalmol. 2018;193:54–61.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Strauss RW, Munoz B, Ho A, Jha A, Michaelides M, Cideciyan AV, et al. Progression of Stargardt disease as determined by fundus autofluorescence in the retrospective progression of Stargardt Disease Study (ProgStar Report No. 9). JAMA Ophthalmol. 2017;135(11):1232–41.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kong X, Strauss RW, Cideciyan AV, Michaelides M, Sahel JA, Munoz B, et al. Visual Acuity change over 12 months in the prospective progression of atrophy secondary to Stargardt Disease (ProgStar) Study: ProgStar Report Number 6. Ophthalmology. 2017;124(11):1640–51.

    Article  PubMed  Google Scholar 

  35. Strauss RW, Munoz B, Ho A, Jha A, Michaelides M, Mohand-Said S, et al. Incidence of atrophic lesions in Stargardt disease in the progression of atrophy secondary to Stargardt Disease (ProgStar) Study: Report No. 5. JAMA Ophthalmol. 2017;135(7):687–95.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schonbach EM, Wolfson Y, Strauss RW, Ibrahim MA, Kong X, Munoz B, et al. Macular sensitivity measured with microperimetry in Stargardt disease in the progression of atrophy secondary to Stargardt Disease (ProgStar) Study: Report No. 7. JAMA Ophthalmol. 2017;135(7):696–703.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kong X, West SK, Strauss RW, Munoz B, Cideciyan AV, Michaelides M, et al. Progression of visual acuity and fundus autofluorescence in recent-onset Stargardt disease: ProgStar Study Report #4. Ophthalmol Retina. 2017;1(6):514–23.

    Article  PubMed  Google Scholar 

  38. Schonbach EM, Ibrahim MA, Strauss RW, Birch DG, Cideciyan AV, Hahn GA, et al. Fixation location and stability using the MP-1 microperimeter in Stargardt disease: ProgStar Report No. 3. Ophthalmol Retina. 2017;1(1):68–76.

    Article  PubMed  Google Scholar 

  39. Kong X, Strauss RW, Michaelides M, Cideciyan AV, Sahel JA, Munoz B, et al. Visual Acuity loss and associated risk factors in the retrospective progression of Stargardt Disease Study (ProgStar Report No. 2). Ophthalmology. 2016;123(9):1887–97.

    Article  PubMed  Google Scholar 

  40. Strauss RW, Ho A, Munoz B, Cideciyan AV, Sahel JA, Sunness JS, et al. The natural history of the progression of atrophy secondary to Stargardt disease (ProgStar) Studies: design and baseline characteristics: ProgStar Report No. 1. Ophthalmology. 2016;123(4):817–28.

    Article  PubMed  Google Scholar 

  41. Tanaka K, Lee W, Zernant J, Schuerch K, Ciccone L, Tsang SH, et al. The rapid-onset chorioretinopathy phenotype of ABCA4 disease. Ophthalmology. 2018;125(1):89–99.

    Article  PubMed  Google Scholar 

  42. Lee W, Zernant J, Nagasaki T, Tsang SH, Allikmets R. Deep scleral exposure: a degenerative outcome of end-stage Stargardt disease. Am J Ophthalmol. 2018;195:16–25.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jauregui R, Cho A, Lee W, Zernant J, Allikmets R, Sparrow JR, et al. Progressive choriocapillaris impairment in ABCA4 maculopathy is secondary to retinal pigment epithelium atrophy. Invest Ophthalmol Vis Sci. 2020;61(4):13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Michaelides M, Chen LL, Brantley MA Jr, Andorf JL, Isaak EM, Jenkins SA, et al. ABCA4 mutations and discordant ABCA4 alleles in patients and siblings with bull’s-eye maculopathy. Br J Ophthalmol. 2007;91(12):1650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang L, Xiao X, Li S, Jia X, Wang P, Sun W, et al. Molecular genetics of cone-rod dystrophy in Chinese patients: new data from 61 probands and mutation overview of 163 probands. Exp Eye Res. 2016;146:252–8.

    Article  CAS  PubMed  Google Scholar 

  46. Oishi M, Oishi A, Gotoh N, Ogino K, Higasa K, Iida K, et al. Next-generation sequencing-based comprehensive molecular analysis of 43 Japanese patients with cone and cone-rod dystrophies. Mol Vis. 2016;22:150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee W, Schuerch K, Zernant J, Collison FT, Bearelly S, Fishman GA, et al. Genotypic spectrum and phenotype correlations of ABCA4-associated disease in patients of south Asian descent. Eur J Hum Genet. 2017;25(6):735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang F, Pan Z, Xu K, Tian L, Xie Y, Zhang X, et al. Screening of ABCA4 gene in a chinese cohort with Stargardt disease or cone-rod dystrophy with a report on 85 novel mutations. Invest Ophthalmol Vis Sci. 2016;57(1):145–52.

    Article  CAS  PubMed  Google Scholar 

  49. Fukui T, Yamamoto S, Nakano K, Tsujikawa M, Morimura H, Nishida K, et al. ABCA4 gene mutations in Japanese patients with Stargardt disease and retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2002;43(9):2819–24.

    PubMed  Google Scholar 

  50. Nakao T, Tsujikawa M, Sawa M, Gomi F, Nishida K. Foveal sparing in patients with Japanese Stargardt’s disease and good visual acuity. Jpn J Ophthalmol. 2012;56(6):584–8.

    Article  PubMed  Google Scholar 

  51. Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015;4(5):860–72.

    Article  CAS  Google Scholar 

  52. Battu R, Verma A, Hariharan R, Krishna S, Kiran R, Jacob J, et al. Identification of novel mutations in ABCA4 gene: clinical and genetic analysis of indian patients with Stargardt disease. Biomed Res Int. 2015;2015:940864.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Koyanagi Y, Akiyama M, Nishiguchi KM, Momozawa Y, Kamatani Y, Takata S, et al. Genetic characteristics of retinitis pigmentosa in 1204 Japanese patients. J Med Genet. 2019;56(10):662–70.

    Article  CAS  PubMed  Google Scholar 

  54. Anderson KL, Baird L, Lewis RA, Chinault AC, Otterud B, Leppert M, et al. A YAC contig encompassing the recessive Stargardt disease gene (STGD) on chromosome 1p. Am J Hum Genet. 1995;57(6):1351–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gerber S, Rozet JM, Bonneau D, Souied E, Camuzat A, Dufier JL, et al. A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am J Hum Genet. 1995;56(2):396–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaplan J, Gerber S, Larget-Piet D, Rozet JM, Dollfus H, Dufier JL, et al. A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1. Nat Genet. 1993;5(3):308–11.

    Article  CAS  PubMed  Google Scholar 

  57. Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;17(1):122.

    Article  CAS  PubMed  Google Scholar 

  58. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15(3):236–46.

    Article  CAS  PubMed  Google Scholar 

  59. Jaakson K, Zernant J, Kulm M, Hutchinson A, Tonisson N, Glavac D, et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat. 2003;22(5):395–403.

    Article  CAS  PubMed  Google Scholar 

  60. Briggs CE, Rucinski D, Rosenfeld PJ, Hirose T, Berson EL, Dryja TP. Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration. Invest Ophthalmol Vis Sci. 2001;42(10):2229–36.

    CAS  PubMed  Google Scholar 

  61. Klevering BJ, Yzer S, Rohrschneider K, Zonneveld M, Allikmets R, van den Born LI, et al. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa. Eur J Hum Genet. 2004;12(12):1024–32.

    Article  CAS  PubMed  Google Scholar 

  62. Ernest PJ, Boon CJ, Klevering BJ, Hoefsloot LH, Hoyng CB. Outcome of ABCA4 microarray screening in routine clinical practice. Mol Vis. 2009;15:2841–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zernant J, Schubert C, Im KM, Burke T, Brown CM, Fishman GA, et al. Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalmol Vis Sci. 2011;52(11):8479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fujinami K, Zernant J, Chana RK, Wright GA, Tsunoda K, Ozawa Y, et al. ABCA4 gene screening by next-generation sequencing in a British cohort. Invest Ophthalmol Vis Sci. 2013;54(10):6662–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zernant J, Xie YA, Ayuso C, Riveiro-Alvarez R, Lopez-Martinez MA, Simonelli F, et al. Analysis of the ABCA4 genomic locus in Stargardt disease. Hum Mol Genet. 2014;23(25):6797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fujinami K, Strauss RW, Chiang JP, Audo IS, Bernstein PS, Birch DG, et al. Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. Br J Ophthalmol. 2019;103(3):390–7.

    Article  PubMed  Google Scholar 

  67. Bauwens M, Garanto A, Sangermano R, Naessens S, Weisschuh N, De Zaeytijd J, et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet Med. 2019;21(8):1761–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sangermano R, Garanto A, Khan M, Runhart EH, Bauwens M, Bax NM, et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genet Med. 2019;21(8):1751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Webster AR, Heon E, Lotery AJ, Vandenburgh K, Casavant TL, Oh KT, et al. An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci. 2001;42(6):1179–89.

    CAS  PubMed  Google Scholar 

  70. Khan M, Cornelis SS, Pozo-Valero MD, Whelan L, Runhart EH, Mishra K, et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet Med. 2020;22(7):1235–46.

    Article  CAS  PubMed  Google Scholar 

  71. Cornelis SS, Bax NM, Zernant J, Allikmets R, Fritsche LG, den Dunnen JT, et al. In silico functional meta-analysis of 5,962 ABCA4 variants in 3,928 retinal dystrophy cases. Hum Mutat. 2017;38(4):400–8.

    Article  CAS  PubMed  Google Scholar 

  72. Schulz HL, Grassmann F, Kellner U, Spital G, Ruther K, Jagle H, et al. Mutation spectrum of the ABCA4 gene in 335 Stargardt disease patients from a multicenter German cohort-impact of selected deep intronic variants and common SNPs. Invest Ophthalmol Vis Sci. 2017;58(1):394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Joo K, Seong MW, Park KH, Park SS, Woo SJ. Genotypic profile and phenotype correlations of ABCA4-associated retinopathy in Koreans. Mol Vis. 2019;25:679–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fujinami-Yokokawa Y, Pontikos N, Yang L, Tsunoda K, Yoshitake K, Iwata T, et al. Prediction of causative genes in inherited retinal disorders from spectral-domain optical coherence tomography utilizing deep learning techniques. J Ophthalmol. 2019;2019:1691064.

    PubMed  PubMed Central  Google Scholar 

  75. Scholl HP, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med. 2016;8(368):368rv6.

    Google Scholar 

  76. Smith J, Ward D, Michaelides M, Moore AT, Simpson S. New and emerging technologies for the treatment of inherited retinal diseases: a horizon scanning review. Eye (Lond). 2015;29(9):1131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol. 2012;124(1):1–13.

    Article  PubMed  Google Scholar 

  78. Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126(1):1–7.

    Article  PubMed  Google Scholar 

  79. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. Erratum to: ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;131(1):81–3.

    Article  PubMed  Google Scholar 

  80. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12.

    Article  PubMed  Google Scholar 

  81. Robson AG, Nilsson J, Li S, Jalali S, Fulton AB, Tormene AP, et al. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol. 2018;136(1):1–26.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lambertus S, van Huet RA, Bax NM, Hoefsloot LH, Cremers FP, Boon CJ, et al. Early-onset Stargardt disease: phenotypic and genotypic characteristics. Ophthalmology. 2015;122(2):335–44.

    Article  PubMed  Google Scholar 

  83. van Huet RA, Bax NM, Westeneng-Van Haaften SC, Muhamad M, Zonneveld-Vrieling MN, Hoefsloot LH, et al. Foveal sparing in Stargardt disease. Invest Ophthalmol Vis Sci. 2014;55(11):7467–78.

    Article  PubMed  Google Scholar 

  84. Westeneng-van Haaften SC, Boon CJ, Cremers FP, Hoefsloot LH, den Hollander AI, Hoyng CB. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology. 2012;119(6):1199–210.

    Article  PubMed  Google Scholar 

  85. Lambertus S, Lindner M, Bax NM, Mauschitz MM, Nadal J, Schmid M, et al. Progression of late-onset Stargardt disease. Invest Ophthalmol Vis Sci. 2016;57(13):5186–91.

    Article  PubMed  Google Scholar 

  86. Runhart EH, Valkenburg D, Cornelis SS, Khan M, Sangermano R, Albert S, et al. Late-onset Stargardt disease due to mild, deep-intronic ABCA4 alleles. Invest Ophthalmol Vis Sci. 2019;60(13):4249–56.

    Article  CAS  PubMed  Google Scholar 

  87. McBain VA, Townend J, Lois N. Progression of retinal pigment epithelial atrophy in Stargardt disease. Am J Ophthalmol. 2012;154(1):146–54.

    Article  PubMed  Google Scholar 

  88. Chen B, Tosha C, Gorin MB, Nusinowitz S. Analysis of autofluorescent retinal images and measurement of atrophic lesion growth in Stargardt disease. Exp Eye Res. 2010;91(2):143–52.

    Article  CAS  PubMed  Google Scholar 

  89. Sangermano R, Bax NM, Bauwens M, van den Born LI, De Baere E, Garanto A, et al. Photoreceptor progenitor mrna analysis reveals exon skipping resulting from the ABCA4 c.5461-10T-->C mutation in Stargardt disease. Ophthalmology. 2016;123(6):1375–85.

    Article  PubMed  Google Scholar 

  90. Sangermano R, Khan M, Cornelis SS, Richelle V, Albert S, Garanto A, et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28(1):100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fadaie Z, Khan M, Del Pozo-Valero M, Cornelis SS, Ayuso C, Cremers FPM, et al. Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4. Hum Mutat. 2019;40(12):2365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maugeri A, van Driel MA, van de Pol DJ, Klevering BJ, van Haren FJ, Tijmes N, et al. The 2588G-->C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet. 1999;64(4):1024–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR. An ABCA4 genomic deletion in patients with Stargardt disease. Hum Mutat. 2003;21(6):636–44.

    Article  CAS  PubMed  Google Scholar 

  94. Bax NM, Sangermano R, Roosing S, Thiadens AA, Hoefsloot LH, van den Born LI, et al. Heterozygous deep-intronic variants and deletions in ABCA4 in persons with retinal dystrophies and one exonic ABCA4 variant. Hum Mutat. 2015;36(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  95. Zernant J, Lee W, Collison FT, Fishman GA, Sergeev YV, Schuerch K, et al. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 2017;54(6):404–12.

    Article  CAS  PubMed  Google Scholar 

  96. Runhart EH, Sangermano R, Cornelis SS, Verheij J, Plomp AS, Boon CJF, et al. The common ABCA4 variant p.Asn1868Ile shows nonpenetrance and variable expression of Stargardt disease when present in trans with severe variants. Invest Ophthalmol Vis Sci. 2018;59(8):3220–31.

    Article  CAS  PubMed  Google Scholar 

  97. Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T, et al. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet. 2000;67(4):800–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Valverde D, Riveiro-Alvarez R, Bernal S, Jaakson K, Baiget M, Navarro R, et al. Microarray-based mutation analysis of the ABCA4 gene in Spanish patients with Stargardt disease: evidence of a prevalent mutated allele. Mol Vis. 2006;12:902–8.

    CAS  PubMed  Google Scholar 

  99. Rosenberg T, Klie F, Garred P, Schwartz M. N965S is a common ABCA4 variant in Stargardt-related retinopathies in the Danish population. Mol Vis. 2007;13:1962–9.

    CAS  PubMed  Google Scholar 

  100. Fujinami K, Yang L, Joo K, Tsunoda K, Kameya S, Hanazono G, et al. Clinical and genetic characteristics of East Asian patients with occult macular dystrophy (Miyake disease): East Asia occult macular dystrophy studies report number 1. Ophthalmology. 2019;126(10):1432–44.

    Article  PubMed  Google Scholar 

  101. Cideciyan AV, Aleman TS, Swider M, Schwartz SB, Steinberg JD, Brucker AJ, et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet. 2004;13(5):525–34.

    Article  CAS  PubMed  Google Scholar 

  102. Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. Adv Exp Med Biol. 2010;703:105–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Charbel Issa P, Barnard AR, Singh MS, Carter E, Jiang Z, Radu RA, et al. Fundus autofluorescence in the Abca4(-/-) mouse model of Stargardt disease—correlation with accumulation of A2E, retinal function, and histology. Invest Ophthalmol Vis Sci. 2013;54(8):5602–12.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sun H, Nathans J. ABCR: rod photoreceptor-specific ABC transporter responsible for Stargardt disease. Methods Enzymol. 2000;315:879–97.

    Article  CAS  PubMed  Google Scholar 

  105. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005;80(5):595–606.

    Article  CAS  PubMed  Google Scholar 

  106. Radu RA, Mata NL, Bagla A, Travis GH. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci U S A. 2004;101(16):5928–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Smith RT, Gomes NL, Barile G, Busuioc M, Lee N, Laine A. Lipofuscin and autofluorescence metrics in progressive STGD. Invest Ophthalmol Vis Sci. 2009;50(8):3907–14.

    Article  PubMed  Google Scholar 

  108. Sparrow JR, Fishkin N, Zhou J, Cai B, Jang YP, Krane S, et al. A2E, a byproduct of the visual cycle. Vision Res. 2003;43(28):2983–90.

    Article  CAS  PubMed  Google Scholar 

  109. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell. 1999;98(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  110. Vazquez-Dominguez I, Garanto A, Collin RWJ. Molecular therapies for inherited retinal diseases-current standing, opportunities and challenges. Genes (Basel). 2019;10(9).

    Google Scholar 

  111. Travis GH, Golczak M, Moise AR, Palczewski K. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol. 2007;47:469–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dugel PU, Novack RL, Csaky KG, Richmond PP, Birch DG, Kubota R. Phase ii, randomized, placebo-controlled, 90-day study of emixustat hydrochloride in geographic atrophy associated with dry age-related macular degeneration. Retina. 2015;35(6):1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kubota R, Al-Fayoumi S, Mallikaarjun S, Patil S, Bavik C, Chandler JW. Phase 1, dose-ranging study of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in healthy volunteers. Retina. 2014;34(3):603–9.

    Article  CAS  PubMed  Google Scholar 

  114. Kubota R, Boman NL, David R, Mallikaarjun S, Patil S, Birch D. Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator. Retina. 2012;32(1):183–8.

    Article  PubMed  Google Scholar 

  115. Rosenfeld PJ, Dugel PU, Holz FG, Heier JS, Pearlman JA, Novack RL, et al. Emixustat hydrochloride for geographic atrophy secondary to age-related macular degeneration: a randomized clinical trial. Ophthalmology. 2018;125(10):1556–67.

    Article  PubMed  Google Scholar 

  116. Kubota R, Calkins DJ, Henry SH, Linsenmeier RA. Emixustat reduces metabolic demand of dark activity in the retina. Invest Ophthalmol Vis Sci. 2019;60(14):4924–30.

    Article  CAS  PubMed  Google Scholar 

  117. Kaufman Y, Ma L, Washington I. Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J Biol Chem. 2011;286(10):7958–65.

    Article  CAS  PubMed  Google Scholar 

  118. Charbel Issa P, Barnard AR, Herrmann P, Washington I, MacLaren RE. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A. 2015;112(27):8415–20.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D, et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest. 2008;118(5):1955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dalkara D, Goureau O, Marazova K, Sahel JA. Let there be light: gene and cell therapy for blindness. Hum Gene Ther. 2016;27(2):134–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  PubMed  Google Scholar 

  122. Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765–75.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof Michel Michaelides, Prof Anthony T. Moore, Prof Graham E. Holder, Prof Andrew R. Webster, Prof Anthony G. Robson, Prof Yozo Miyake, Prof Kazushige Tsunoda, Prof Takeshi Iwata, Prof Hendrik P. N. Scholl, Dr Rupert W Strauss, Dr Michalis Georgiou, Dr Kamron N. Khan, Dr Preena Tanna, Dr Ana Fakin, Prof Se Joon Woo, Prof Ruifang Sui, Prof Shiying Li, Kwangsic Joo, Dr. Panagiotis Sergouniotis, Dr Eva Lenassi, Dr Toshihide Kurihara, and Prof Kazuo Tsubota for their great guidance.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Kaoru Fujinami .

Editor information

Editors and Affiliations

Ethics declarations

Kaoru Fujinami is supported by grants from Grant-in-Aid for Young Scientists (A) of the Ministry of Education, Culture, Sports, Science and Technology, Japan (16H06269), grants from Grant-in-Aid for Scientists to support international collaborative studies of the Ministry of Education, Culture, Sports, Science and Technology, Japan (16KK01930002), grants from National Hospital Organization Network Research Fund (H30-NHO-Sensory Organs-03), grants from FOUNDATION FIGHTING BLINDNESS ALAN LATIES CAREER DEVELOPMENT PROGRAM (CF-CL-0416-0696-UCL), grants from Health Labour Sciences Research Grant, The Ministry of Health Labour and Welfare (201711107A), and grants from Great Britain Sasakawa Foundation Butterfield Awards.

Yu Fujinami-Yokokawa was supported by grants from Grant-in-Aid for Young Scientists of the Ministry of Education, Culture, Sports, Science and Technology, Japan (18K16943).

The sponsor or funding organization had no role in the design or conduct of this research.

Conflict of Interest Disclosures

All authors have completed Disclosure of Potential Conflicts of Interest. Individual investigators who participate in the sponsored project(s) are not directly compensated by the sponsor but may receive salary or other support from the institution to support their effort on the project(s).

Kaoru Fujinami is a paid consultant of Astellas Pharma Inc, Kubota Pharmaceutical Holdings Co., Ltd, Acucela Inc., Janssen Pharm, Sanofi Genzyme, and NightstaRx Limited. Kaoru Fujinami reports personal fees from Astellas Pharma Inc, personal fees from Kubota Pharmaceutical Holdings Co., Ltd., personal fees from Acucela Inc., personal fees from NightstaRx Limited., personal fees from SANTEN Company Limited, personal fees from Foundation Fighting Blindness, personal fees from Foundation Fighting Blindness Clinical Research Institute, personal fees from Japanese Ophthalmology Society, personal fees from Japan Retinitis Pigmentosa Society. Laboratory of Visual Physiology, Division for Vision Research, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan is supported by grants from Astellas Pharma Inc (NCT03281005), outside the submitted work.

Yu Fujinami-Yokokawa was supported by grants from Grant-in-Aid for Young Scientists of the Ministry of Education, Culture, Sports, Science and Technology, Japan (18K16943).

Role of the Funder/Sponsor

The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujinami, K. et al. (2022). Stargardt Macular Dystrophy. In: Yu, HG. (eds) Inherited Retinal Disease. Springer, Singapore. https://doi.org/10.1007/978-981-16-7337-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7337-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7336-8

  • Online ISBN: 978-981-16-7337-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics