Skip to main content

Congenital Stationary Night Blindness

  • Chapter
  • First Online:
Inherited Retinal Disease
  • 491 Accesses

Abstract

Congenital stationary night blindness (CSNB) is a disease group including congenital non-progressive retinal disorders characterized by reduced night vision and impaired dark adaptation [1]. This disease group is quite rare, and the prevalence of CSNB has been estimated at 0.34 per 100,000 in Northern Europe [2]. The prevalence might have been underestimated because night blindness symptom decreases due to the expansion of night lighting in urban cities, and night vision is not routinely measured [1]. Like the name of the disease, night blindness is typical which is generally not progressing [3]. Other associated abnormalities are color vision defect, nystagmus, photophobia, strabismus, refractive error, and fundus abnormality [4, 5]. Clinical presentation may appear differently depending on the causative gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res. 2015;45:58–110.

    Article  PubMed  Google Scholar 

  2. Haim M. Congenital stationary night blindness. Acta Ophthalmol (Copenh). 1986;64:192–8.

    Article  CAS  Google Scholar 

  3. Carr RE. Congenital stationary nightblindness. Trans Am Ophthalmol Soc. 1974;72:448–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zeitz C. Molecular genetics and protein function involved in nocturnal vision. Expert Rev Ophthalmol. 2007;2:467–85.

    Article  CAS  Google Scholar 

  5. Tan X, Aoki A, Yanagi Y. Color vision abnormality as an initial presentation of the complete type of congenital stationary night blindness. Clin Ophthalmol. 2013;7:1587–90.

    PubMed  PubMed Central  Google Scholar 

  6. Koenekoop RK. Revisiting congenital stationary night blindness in the molecular era. JAMA Ophthalmol. 2018;136:398–9.

    Article  PubMed  Google Scholar 

  7. Almutairi F, Almeshari N, Ahmad K, Magliyah MS, Schatz P. Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia. Acta Ophthalmol. 2020; https://doi.org/10.1111/aos.14693.

  8. Baldwin AN, Robson AG, Moore AT, Duncan JL. Abnormalities of rod and cone function. In: Schachat A, editor. Ryan’s retina. 6th ed. Edinburgh: Elsevier; 2017. p. 1006–17.

    Google Scholar 

  9. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol. 1986;104:1013–20.

    Article  CAS  PubMed  Google Scholar 

  10. Lee YJ, Joo K, Seong MW, Park KH, Park SS, Woo SJ. Congenital stationary night blindness due to novel TRPM1 gene mutations in a Korean patient. Korean J Ophthalmol. 2020;34:170–2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schubert G, Bornschein H. [Analysis of the human electroretinogram]. Ophthalmologica. 1952;123:396–413.

    Google Scholar 

  12. Bijveld MM, van Genderen MM, Hoeben FP, et al. Assessment of night vision problems in patients with congenital stationary night blindness. PLoS One. 2013;8:e62927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bijveld MM, Florijn RJ, Bergen AA, et al. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120:2072–81.

    Article  PubMed  Google Scholar 

  14. Kamiyama M, Yamamoto S, Nitta K, Hayasaka S. Undetectable S cone electroretinogram b-wave in complete congenital stationary night blindness. Br J Ophthalmol. 1996;80:637–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolb H, Goede P, Roberts S, McDermott R, Gouras P. Uniqueness of the S-cone pedicle in the human retina and consequences for color processing. J Comp Neurol. 1997;386:443–60.

    Article  CAS  PubMed  Google Scholar 

  16. Pusch CM, Zeitz C, Brandau O, et al. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet. 2000;26:324–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dryja TP, McGee TL, Berson EL, et al. Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci U S A. 2005;102:4884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Audo I, Kohl S, Leroy BP, et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2009;85:720–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Audo I, Bujakowska K, Orhan E, et al. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2012;90:321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeitz C, Jacobson SG, Hamel CP, et al. Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2013;92:67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miraldi Utz V, Pfeifer W, Longmuir SQ, Olson RJ, Wang K, Drack AV. Presentation of TRPM1-associated congenital stationary night blindness in children. JAMA Ophthalmol. 2018;136:389–98.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakamura M, Sanuki R, Yasuma TR, et al. TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol Vis. 2010;16:425–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Watanabe I, Taniguchi Y, Morioka K, Kato M. Congenital stationary night blindness with myopia: a clinico-pathologic study. Doc Ophthalmol. 1986;63:55–62.

    Article  CAS  PubMed  Google Scholar 

  24. Boycott KM, Pearce WG, Bech-Hansen NT. Clinical variability among patients with incomplete X-linked congenital stationary night blindness and a founder mutation in CACNA1F. Can J Ophthalmol. 2000;35:204–13.

    Article  CAS  PubMed  Google Scholar 

  25. Chen RW, Greenberg JP, Lazow MA, et al. Autofluorescence imaging and spectral-domain optical coherence tomography in incomplete congenital stationary night blindness and comparison with retinitis pigmentosa. Am J Ophthalmol. 2012;153:143–54.e2.

    Google Scholar 

  26. Bech-Hansen NT, Naylor MJ, Maybaum TA, et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet. 1998;19:264–7.

    Article  CAS  PubMed  Google Scholar 

  27. Vincent A, Héon E. Outer retinal structural anomaly due to frameshift mutation in CACNA1F gene. Eye (Lond). 2012;26:1278–80.

    Article  CAS  Google Scholar 

  28. Zeitz C, Kloeckener-Gruissem B, Forster U, et al. Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am J Hum Genet. 2006;79:657–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wycisk KA, Zeitz C, Feil S, et al. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet. 2006;79:973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khan AO, Alrashed M, Alkuraya FS. Clinical characterisation of the CABP4-related retinal phenotype. Br J Ophthalmol. 2013;97:262–5.

    Article  PubMed  Google Scholar 

  31. Cunier F. Hemeralopie hereditaire depuis deux siecles dans une famille de la commune de Vendemian, a cinq lieues de Montpellier. Ann d’Ocul. 1838;1:32–4.

    Google Scholar 

  32. Riggs LA. Electroretinography in cases of night blindness. Am J Ophthalmol. 1954;38:70–8.

    Article  CAS  PubMed  Google Scholar 

  33. Sandberg MA, Pawlyk BS, Dan J, Arnaud B, Dryja TP, Berson EL. Rod and cone function in the Nougaret form of stationary night blindness. Arch Ophthalmol. 1998;116:867–72.

    Article  CAS  PubMed  Google Scholar 

  34. Dryja TP, Hahn LB, Reboul T, Arnaud B. Missense mutation in the gene encoding the alpha subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet. 1996;13:358–60.

    Article  CAS  PubMed  Google Scholar 

  35. Szabo V, Kreienkamp HJ, Rosenberg T, Gal A. p.Gln200Glu, a putative constitutively active mutant of rod alpha-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Hum Mutat. 2007;28:741–2.

    Article  PubMed  Google Scholar 

  36. Nettleship E. A history of congenital stationary night blindness in nine consecutive generations. Trans Ophthalmol Soc UK. 1907;27:269.

    Google Scholar 

  37. Gal A, Orth U, Baehr W, Schwinger E, Rosenberg T. Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness. Nat Genet. 1994;7:64–8.

    Article  CAS  PubMed  Google Scholar 

  38. Manes G, Cheguru P, Majumder A, et al. A truncated form of rod photoreceptor PDE6 beta-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the gamma-subunit. PLoS One. 2014;9:e95768.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dryja TP, Berson EL, Rao VR, Oprian DD. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet. 1993;4:280–3.

    Article  CAS  PubMed  Google Scholar 

  40. al-Jandal N, Farrar GJ, Kiang AS, et al. A novel mutation within the rhodopsin gene (Thr-94-Ile) causing autosomal dominant congenital stationary night blindness. Hum Mutat. 1999;13:75–81.

    Google Scholar 

  41. Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M. Dark-light: model for nightblindness from the human rhodopsin Gly-90-->Asp mutation. Proc Natl Acad Sci U S A. 1995;92:880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oguchi C. Ueber einen Fall von eigenartiger Hemeralopie. Nippon Ganka Gakkai Zasshi. 1907;11:123–34.

    Google Scholar 

  43. Mizuo G. On a new discovery in the dark adaptation of Oguchi’s disease. Acta Societatis Ophthalmologicae Japonicae. 1913;17:1854–9.

    Google Scholar 

  44. Mizuo G, Nakamura B. On new discovery in dark adaptation in Oguchi’s disease. Acta Societatis Ophthalmologicae Japonicae. 1914;18:73–127.

    Google Scholar 

  45. Hashimoto H, Kishi S. Shortening of the rod outer segment in Oguchi disease. Graefes Arch Clin Exp Ophthalmol. 2009;247:1561–3.

    Article  PubMed  Google Scholar 

  46. Takada M, Otani A, Ogino K, Yoshimura N. Spectral-domain optical coherence tomography findings in the Mizuo-Nakamura phenomenon of Oguchi disease. Retina. 2011;31:626–8.

    Article  PubMed  Google Scholar 

  47. Carr RE, Gouras P. Oguchi’s disease. Arch Ophthalmol. 1965;73:646–56.

    Article  CAS  PubMed  Google Scholar 

  48. Miyake Y, Horiguchi M, Suzuki S, Kondo M, Tanikawa A. Electrophysiological findings in patients with Oguchi’s disease. Jpn J Ophthalmol. 1996;40:511–9.

    CAS  PubMed  Google Scholar 

  49. Nakamura B. Ueber ein neues Phanomen der Farbenveranderung des menschlichen Augenhintergrundes im Zusammenhang mit der fortschreitenden Dunkeladaptation. Klin Monatsbl Augenheilkd. 1920;65:883.

    Google Scholar 

  50. Gouras P. Electroretinography: some basic principles. Invest Ophthalmol. 1970;9:557–69.

    CAS  PubMed  Google Scholar 

  51. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A. A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet. 1995;10:360–2.

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto S, Sippel KC, Berson EL, Dryja TP. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet. 1997;15:175–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi T, Gekka T, Takeuchi T, Goto-Omoto S, Kitahara K. A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses. Ophthalmology. 2007;114:134–41.

    Article  PubMed  Google Scholar 

  54. Hayashi T, Tsuzuranuki S, Kozaki K, Urashima M, Tsuneoka H. Macular dysfunction in oguchi disease with the frequent mutation 1147delA in the SAG gene. Ophthalmic Res. 2011;46:175–80.

    Article  CAS  PubMed  Google Scholar 

  55. Paskowitz DM, LaVail MM, Duncan JL. Light and inherited retinal degeneration. Br J Ophthalmol. 2006;90:1060–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lauber H. Die sogenannte Retinitis punctata albescens. Klin Monatasbl Augenheilkd. 1910;48:133.

    Google Scholar 

  57. Sergouniotis PI, Sohn EH, Li Z, et al. Phenotypic variability in RDH5 retinopathy (Fundus Albipunctatus). Ophthalmology. 2011;118:1661–70.

    Article  PubMed  Google Scholar 

  58. Wang NK, Chuang LH, Lai CC, et al. Multimodal fundus imaging in fundus albipunctatus with RDH5 mutation: a newly identified compound heterozygous mutation and review of the literature. Doc Ophthalmol. 2012;125:51–62.

    Article  PubMed  Google Scholar 

  59. Marmor MF. Long-term follow-up of the physiologic abnormalities and fundus changes in fundus albipunctatus. Ophthalmology. 1990;97:380–4.

    Article  CAS  PubMed  Google Scholar 

  60. Sekiya K, Nakazawa M, Ohguro H, Usui T, Tanimoto N, Abe H. Long-term fundus changes due to Fundus albipunctatus associated with mutations in the RDH5 gene. Arch Ophthalmol. 2003;121:1057–9.

    Article  PubMed  Google Scholar 

  61. Schatz P, Preising M, Lorenz B, et al. Lack of autofluorescence in fundus albipunctatus associated with mutations in RDH5. Retina. 2010;30:1704–13.

    Article  PubMed  Google Scholar 

  62. Hotta K, Nakamura M, Kondo M, et al. Macular dystrophy in a Japanese family with fundus albipunctatus. Am J Ophthalmol. 2003;135:917–9.

    Article  PubMed  Google Scholar 

  63. Nakamura M, Hotta Y, Tanikawa A, Terasaki H, Miyake Y. A high association with cone dystrophy in Fundus albipunctatus caused by mutations of the RDH5 gene. Invest Ophthalmol Vis Sci. 2000;41:3925–32.

    CAS  PubMed  Google Scholar 

  64. Makiyama Y, Ooto S, Hangai M, et al. Cone abnormalities in fundus albipunctatus associated with RDH5 mutations assessed using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol. 2014;157:558–70.e1–4.

    Google Scholar 

  65. Skorczyk-Werner A, Pawlowski P, Michalczuk M, et al. Fundus albipunctatus: review of the literature and report of a novel RDH5 gene mutation affecting the invariant tyrosine (p.Tyr175Phe). J Appl Genet. 2015;56:317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Niwa Y, Kondo M, Ueno S, Nakamura M, Terasaki H, Miyake Y. Cone and rod dysfunction in fundus albipunctatus with RDH5 mutation: an electrophysiological study. Invest Ophthalmol Vis Sci. 2005;46:1480–5.

    Article  PubMed  Google Scholar 

  67. Schatz P, Preising M, Lorenz B, Sander B, Larsen M, Rosenberg T. Fundus albipunctatus associated with compound heterozygous mutations in RPE65. Ophthalmology. 2011;118:888–94.

    Article  PubMed  Google Scholar 

  68. Yamamoto H, Simon A, Eriksson U, Harris E, Berson EL, Dryja TP. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat Genet. 1999;22:188–91.

    Article  CAS  PubMed  Google Scholar 

  69. Carr RE, Ripps H, Siegel IM. Visual pigment kinetics and adaptation in fundus albipunctatus. Doc Ophthalmol. 1974;4:193–204.

    Google Scholar 

  70. Driessen CA, Janssen BP, Winkens HJ, et al. Null mutation in the human 11-cis retinol dehydrogenase gene associated with fundus albipunctatus. Ophthalmology. 2001;108:1479–84.

    Article  CAS  PubMed  Google Scholar 

  71. Marmor MF, Haeseleer F, Palczewski K. Albipunctate retinopathy with cone dysfunction and no abnormality in the RDH5 or RLBP1 genes. Retina. 2003;23:543–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, BJ. (2022). Congenital Stationary Night Blindness. In: Yu, HG. (eds) Inherited Retinal Disease. Springer, Singapore. https://doi.org/10.1007/978-981-16-7337-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7337-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7336-8

  • Online ISBN: 978-981-16-7337-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics