Skip to main content

Hereditary Vitreoretinal Degenerations

  • Chapter
  • First Online:
Inherited Retinal Disease
  • 479 Accesses

Abstract

The hereditary vitreoretinal degenerations contain a heterogenous group of disease entities with a wide variability of phenotypes. Clinical diagnosis of these conditions would be difficult due to overlapping clinical features among them. Now, the advances in clinical and molecular genetic studies have contributed to the assessment to define and diagnose these conditions properly. This chapter deals with several types of disorders covering chondrodysplasias with vitreoretinal degeneration including Stickler syndrome, Wagner syndrome, snowflake vitreoretinal degeneration, retinal nuclear receptor-related diseases including enhanced S-cone syndrome and autosomal dominant vitreoretinochoroidopathy. The purpose of this chapter is to provide an overview of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stickler GB, Belau PG, Farrell FJ, Jones JD, Pugh DG, Steinberg AG, et al. Hereditary progressive arthro-ophthalmopathy. Mayo Clin Proc. 1965;40:433–55.

    CAS  PubMed  Google Scholar 

  2. Snead MP, Payne SJ, Barton DE, Yates JR, al-Imara L, Pope FM, et al. Stickler syndrome: correlation between vitreoretinal phenotypes and linkage to COL 2A1. Eye (Lond). 1994;8(Pt 6):609–14. https://doi.org/10.1038/eye.1994.153.

    Article  PubMed  Google Scholar 

  3. Richards AJ, Martin S, Yates JR, Scott JD, Baguley DM, Pope FM, et al. COL2A1 exon 2 mutations: relevance to the Stickler and Wagner syndromes. Br J Ophthalmol. 2000;84(4):364–71. https://doi.org/10.1136/bjo.84.4.364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richards AJ, Yates JR, Williams R, Payne SJ, Pope FM, Scott JD, et al. A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1 (XI) collagen. Hum Mol Genet. 1996;5(9):1339–43. https://doi.org/10.1093/hmg/5.9.1339.

    Article  CAS  PubMed  Google Scholar 

  5. Sirko-Osadsa DA, Murray MA, Scott JA, Lavery MA, Warman ML, Robin NH. Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the alpha2(XI) chain of type XI collagen. J Pediatr. 1998;132(2):368–71. https://doi.org/10.1016/s0022-3476(98)70466-4.

    Article  CAS  PubMed  Google Scholar 

  6. Nikopoulos K, Schrauwen I, Simon M, Collin RW, Veckeneer M, Keymolen K, et al. Autosomal recessive Stickler syndrome in two families is caused by mutations in the COL9A1 gene. Invest Ophthalmol Vis Sci. 2011;52(7):4774–9. https://doi.org/10.1167/iovs.10-7128.

    Article  CAS  PubMed  Google Scholar 

  7. Baker S, Booth C, Fillman C, Shapiro M, Blair MP, Hyland JC, et al. A loss of function mutation in the COL9A2 gene causes autosomal recessive Stickler syndrome. Am J Med Genet A. 2011;155A(7):1668–72. https://doi.org/10.1002/ajmg.a.34071.

    Article  CAS  PubMed  Google Scholar 

  8. Faletra F, D'Adamo AP, Bruno I, Athanasakis E, Biskup S, Esposito L, et al. Autosomal recessive Stickler syndrome due to a loss of function mutation in the COL9A3 gene. Am J Med Genet A. 2014;164A(1):42–7. https://doi.org/10.1002/ajmg.a.36165.

    Article  CAS  PubMed  Google Scholar 

  9. Schrauwen I, Sommen M, Claes C, Pinner J, Flaherty M, Collins F, et al. Broadening the phenotype of LRP2 mutations: a new mutation in LRP2 causes a predominantly ocular phenotype suggestive of Stickler syndrome. Clin Genet. 2014;86(3):282–6. https://doi.org/10.1111/cge.12265.

    Article  CAS  PubMed  Google Scholar 

  10. Alzahrani F, Al Hazzaa SA, Tayeb H, Alkuraya FS. LOXL3, encoding lysyl oxidase-like 3, is mutated in a family with autosomal recessive Stickler syndrome. Hum Genet. 2015;134(4):451–3. https://doi.org/10.1007/s00439-015-1531-z.

    Article  CAS  PubMed  Google Scholar 

  11. Vu CD, Brown J Jr, Korkko J, Ritter R 3rd, Edwards AO. Posterior chorioretinal atrophy and vitreous phenotype in a family with Stickler syndrome from a mutation in the COL2A1 gene. Ophthalmology. 2003;110(1):70–7. https://doi.org/10.1016/s0161-6420(02)01446-x.

    Article  PubMed  Google Scholar 

  12. Donoso LA, Edwards AO, Frost AT. Ritter R, 3rd, Ahmad N, Vrabec T et al. Clinical variability of Stickler syndrome: role of exon 2 of the collagen COL2A1 gene. Surv Ophthalmol. 2003;48(2):191–203. https://doi.org/10.1016/s0039-6257(02)00460-5.

    Article  PubMed  Google Scholar 

  13. Richards AJ, McNinch A, Martin H, Oakhill K, Rai H, Waller S, et al. Stickler syndrome and the vitreous phenotype: mutations in COL2A1 and COL11A1. Hum Mutat. 2010;31(6):E1461–71. https://doi.org/10.1002/humu.21257.

    Article  CAS  PubMed  Google Scholar 

  14. Hagler WS, Crosswell HH Jr. Radial perivascular chorioretinal degeneration and retinal detachment. Trans Am Acad Ophthalmol Otolaryngol. 1968;72(2):203–16.

    CAS  PubMed  Google Scholar 

  15. Stickler GB, Hughes W, Houchin P. Clinical features of hereditary progressive arthro-ophthalmopathy (Stickler syndrome): a survey. Genet Med. 2001;3(3):192–6. https://doi.org/10.1097/00125817-200105000-00008.

    Article  CAS  PubMed  Google Scholar 

  16. Abeysiri P, Bunce C, da Cruz L. Outcomes of surgery for retinal detachment in patients with Stickler syndrome: a comparison of two sequential 20-year cohorts. Graefes Arch Clin Exp Ophthalmol. 2007;245(11):1633–8. https://doi.org/10.1007/s00417-007-0609-2.

    Article  PubMed  Google Scholar 

  17. Carroll C, Papaioannou D, Rees A, Kaltenthaler E. The clinical effectiveness and safety of prophylactic retinal interventions to reduce the risk of retinal detachment and subsequent vision loss in adults and children with Stickler syndrome: a systematic review. Health Technol Assess. 2011;15(16):iii–xiv, 1–62. https://doi.org/10.3310/hta15160.

  18. Ang A, Poulson AV, Goodburn SF, Richards AJ, Scott JD, Snead MP. Retinal detachment and prophylaxis in type 1 Stickler syndrome. Ophthalmology. 2008;115(1):164–8. https://doi.org/10.1016/j.ophtha.2007.03.059.

    Article  PubMed  Google Scholar 

  19. Szymko-Bennett YM, Mastroianni MA, Shotland LI, Davis J, Ondrey FG, Balog JZ, et al. Auditory dysfunction in Stickler syndrome. Arch Otolaryngol Head Neck Surg. 2001;127(9):1061–8. https://doi.org/10.1001/archotol.127.9.1061.

    Article  CAS  PubMed  Google Scholar 

  20. Acke FR, Malfait F, Vanakker OM, Steyaert W, De Leeneer K, Mortier G, et al. Novel pathogenic COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and exome sequencing. Mol Genet Metab. 2014;113(3):230–5. https://doi.org/10.1016/j.ymgme.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  21. Liberfarb RM, Goldblatt A. Prevalence of mitral-valve prolapse in the Stickler syndrome. Am J Med Genet. 1986;24(3):387–92. https://doi.org/10.1002/ajmg.1320240302.

    Article  CAS  PubMed  Google Scholar 

  22. Snead MP. Hereditary vitreopathy. Eye (Lond). 1996;10(Pt 6):653–63. https://doi.org/10.1038/eye.1996.158.

    Article  PubMed  Google Scholar 

  23. Fincham GS, Pasea L, Carroll C, McNinch AM, Poulson AV, Richards AJ, et al. Prevention of retinal detachment in Stickler syndrome: the Cambridge prophylactic cryotherapy protocol. Ophthalmology. 2014;121(8):1588–97. https://doi.org/10.1016/j.ophtha.2014.02.022.

    Article  PubMed  Google Scholar 

  24. Leiba H, Oliver M, Pollack A. Prophylactic laser photocoagulation in Stickler syndrome. Eye (Lond). 1996;10(Pt 6):701–8. https://doi.org/10.1038/eye.1996.164.

    Article  PubMed  Google Scholar 

  25. Marshall D. Ectodermal dysplasia; report of kindred with ocular abnormalities and hearing defect. Am J Ophthalmol. 1958;45(4 Pt 2):143–56.

    Article  CAS  Google Scholar 

  26. Annunen S, Korkko J, Czarny M, Warman ML, Brunner HG, Kaariainen H, et al. Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. Am J Hum Genet. 1999;65(4):974–83. https://doi.org/10.1086/302585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ayme S, Preus M. The Marshall and Stickler syndromes: objective rejection of lumping. J Med Genet. 1984;21(1):34–8. https://doi.org/10.1136/jmg.21.1.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan AO, Aldahmesh MA, Mohamed JY, Al-Mesfer S, Alkuraya FS. The distinct ophthalmic phenotype of Knobloch syndrome in children. Br J Ophthalmol. 2012;96(6):890–5. https://doi.org/10.1136/bjophthalmol-2011-301396.

    Article  PubMed  Google Scholar 

  29. Sertie AL, Sossi V, Camargo AA, Zatz M, Brahe C, Passos-Bueno MR. Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome). Hum Mol Genet. 2000;9(13):2051–8. https://doi.org/10.1093/hmg/9.13.2051.

    Article  CAS  PubMed  Google Scholar 

  30. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478(7367):57–63. https://doi.org/10.1038/nature10423.

    Article  CAS  PubMed  Google Scholar 

  31. Aldahmesh MA, Khan AO, Mohamed JY, Alkuraya H, Ahmed H, Bobis S, et al. Identification of ADAMTS18 as a gene mutated in Knobloch syndrome. J Med Genet. 2011;48(9):597–601. https://doi.org/10.1136/jmedgenet-2011-100306.

    Article  CAS  PubMed  Google Scholar 

  32. Aldahmesh MA, Khan AO, Mohamed JY, Levin AV, Wuthisiri W, Lynch S, et al. No evidence for locus heterogeneity in Knobloch syndrome. J Med Genet. 2013;50(8):565–6. https://doi.org/10.1136/jmedgenet-2013-101755.

    Article  CAS  PubMed  Google Scholar 

  33. Maumenee IH, Traboulsi EI. The ocular findings in Kniest dysplasia. Am J Ophthalmol. 1985;100(1):155–60. https://doi.org/10.1016/s0002-9394(14)74998-0.

    Article  CAS  PubMed  Google Scholar 

  34. Weissenbacher G, Zweymueller E. [Simultaneous occurrence of the Pierre Robin syndrome and fetal chondrodysplasia]. Monatsschr Kinderheilkd. 1964;112:315–7.

    Google Scholar 

  35. Giedion A, Brandner M, Lecannellier J, Muhar U, Prader A, Sulzer J, et al. Oto-spondylo-megaepiphyseal dysplasia (OSMED). Helv Paediatr Acta. 1982;37(4):361–80.

    CAS  PubMed  Google Scholar 

  36. Pihlajamaa T, Prockop DJ, Faber J, Winterpacht A, Zabel B, Giedion A, et al. Heterozygous glycine substitution in the COL11A2 gene in the original patient with the Weissenbacher-Zweymuller syndrome demonstrates its identity with heterozygous OSMED (nonocular Stickler syndrome). Am J Med Genet. 1998;80(2):115–20. https://doi.org/10.1002/(sici)1096-8628(19981102)80:2<115::aid-ajmg5>3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  37. Wagner H. Ein bisher unbekanntes Erbleiden des Auges (Degeneratio hyaloideo-retinalis hereditaria), beobachtet im Kanton Zurich. Klin Monatsbl Augenheilkd. 1938;100:840–57.

    Google Scholar 

  38. Perveen R, Hart-Holden N, Dixon MJ, Wiszniewski W, Fryer AE, Brunner HG, et al. Refined genetic and physical localization of the Wagner disease (WGN1) locus and the genes CRTL1 and CSPG2 to a 2- to 2.5-cM region of chromosome 5q14.3. Genomics. 1999;57(2):219–26. https://doi.org/10.1006/geno.1999.5766.

    Article  CAS  PubMed  Google Scholar 

  39. Mukhopadhyay A, Nikopoulos K, Maugeri A, de Brouwer AP, van Nouhuys CE, Boon CJ, et al. Erosive vitreoretinopathy and Wagner disease are caused by intronic mutations in CSPG2/Versican that result in an imbalance of splice variants. Invest Ophthalmol Vis Sci. 2006;47(8):3565–72. https://doi.org/10.1167/iovs.06-0141.

    Article  PubMed  Google Scholar 

  40. Miyamoto T, Inoue H, Sakamoto Y, Kudo E, Naito T, Mikawa T, et al. Identification of a novel splice site mutation of the CSPG2 gene in a Japanese family with Wagner syndrome. Invest Ophthalmol Vis Sci. 2005;46(8):2726–35. https://doi.org/10.1167/iovs.05-0057.

    Article  PubMed  Google Scholar 

  41. Brown DM, Graemiger RA, Hergersberg M, Schinzel A, Messmer EP, Niemeyer G, et al. Genetic linkage of Wagner disease and erosive vitreoretinopathy to chromosome 5q13-14. Arch Ophthalmol. 1995;113(5):671–5. https://doi.org/10.1001/archopht.1995.01100050139045.

    Article  CAS  PubMed  Google Scholar 

  42. Graemiger RA, Niemeyer G, Schneeberger SA, Messmer EP. Wagner vitreoretinal degeneration. Follow-up of the original pedigree. Ophthalmology. 1995;102(12):1830–9. https://doi.org/10.1016/s0161-6420(95)30787-7.

    Article  CAS  PubMed  Google Scholar 

  43. Meredith SP, Richards AJ, Flanagan DW, Scott JD, Poulson AV, Snead MP. Clinical characterisation and molecular analysis of Wagner syndrome. Br J Ophthalmol. 2007;91(5):655–9. https://doi.org/10.1136/bjo.2006.104406.

    Article  PubMed  Google Scholar 

  44. Rothschild PR, Burin-des-Roziers C, Audo I, Nedelec B, Valleix S, Brezin AP. Spectral-domain optical coherence tomography in Wagner syndrome: characterization of vitreoretinal interface and foveal changes. Am J Ophthalmol. 2015;160(5):1065–72. e1. https://doi.org/10.1016/j.ajo.2015.08.012.

    Article  PubMed  Google Scholar 

  45. Hirose T, Lee KY, Schepens CL. Snowflake degeneration in hereditary vitreoretinal degeneration. Am J Ophthalmol. 1974;77(2):143–53. https://doi.org/10.1016/0002-9394(74)90665-5.

    Article  CAS  PubMed  Google Scholar 

  46. Hejtmancik JF, Jiao X, Li A, Sergeev YV, Ding X, Sharma AK, et al. Mutations in KCNJ13 cause autosomal-dominant snowflake vitreoretinal degeneration. Am J Hum Genet. 2008;82(1):174–80. https://doi.org/10.1016/j.ajhg.2007.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pollack A, Uchenik D, Chemke J, Oliver M. Prophylactic laser photocoagulation in hereditary snowflake vitreoretinal degeneration. A family report. Arch Ophthalmol. 1983;101(10):1536–9. https://doi.org/10.1001/archopht.1983.01040020538005.

    Article  CAS  PubMed  Google Scholar 

  48. Lee MM, Ritter R 3rd, Hirose T, Vu CD, Edwards AO. Snowflake vitreoretinal degeneration: follow-up of the original family. Ophthalmology. 2003;110(12):2418–26. https://doi.org/10.1016/S0161-6420(03)00828-5.

    Article  PubMed  Google Scholar 

  49. Hirose T, Wolf E, Schepens CL. Retinal functions in snowflake degeneration. Ann Ophthalmol. 1980;12(10):1135–46.

    CAS  PubMed  Google Scholar 

  50. Kobayashi M, Takezawa S, Hara K, Yu RT, Umesono Y, Agata K, et al. Identification of a photoreceptor cell-specific nuclear receptor. Proc Natl Acad Sci U S A. 1999;96(9):4814–9. https://doi.org/10.1073/pnas.96.9.4814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng H, Khanna H, Oh EC, Hicks D, Mitton KP, Swaroop A. Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum Mol Genet. 2004;13(15):1563–75. https://doi.org/10.1093/hmg/ddh173.

    Article  CAS  PubMed  Google Scholar 

  52. Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang WX, Gupta N, et al. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci U S A. 2002;99(1):473–8. https://doi.org/10.1073/pnas.022533099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng GH, Ahmad O, Ahmad F, Liu J, Chen S. The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet. 2005;14(6):747–64. https://doi.org/10.1093/hmg/ddi070.

    Article  CAS  PubMed  Google Scholar 

  54. Jacobson SG, Roman AJ, Roman MI, Gass JD, Parker JA. Relatively enhanced S cone function in the Goldmann-Favre syndrome. Am J Ophthalmol. 1991;111(4):446–53. https://doi.org/10.1016/s0002-9394(14)72379-7.

    Article  CAS  PubMed  Google Scholar 

  55. Jurklies B, Weismann M, Kellner U, Zrenner E, Bornfeld N. Clinical findings in autosomal recessive syndrome of blue cone hypersensitivity. Ophthalmologe. 2001;98(3):285–93. https://doi.org/10.1007/s003470170164.

    Article  CAS  PubMed  Google Scholar 

  56. Audo I, Michaelides M, Robson AG, Hawlina M, Vaclavik V, Sandbach JM, et al. Phenotypic variation in enhanced S-cone syndrome. Invest Ophthalmol Vis Sci. 2008;49(5):2082–93. https://doi.org/10.1167/iovs.05-1629.

    Article  PubMed  Google Scholar 

  57. Jacobson SG, Sumaroka A, Aleman TS, Cideciyan AV, Schwartz SB, Roman AJ, et al. Nuclear receptor NR2E3 gene mutations distort human retinal laminar architecture and cause an unusual degeneration. Hum Mol Genet. 2004;13(17):1893–902. https://doi.org/10.1093/hmg/ddh198.

    Article  CAS  PubMed  Google Scholar 

  58. Franceschetti A, Francois J, Babel J. Chorioretinal heredodegenerations. Springfield, IL: Charles C. Thomas; 1974.

    Google Scholar 

  59. Sharon D, Sandberg MA, Caruso RC, Berson EL, Dryja TP. Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol. 2003;121(9):1316–23. https://doi.org/10.1001/archopht.121.9.1316.

    Article  CAS  PubMed  Google Scholar 

  60. Jacobson SG, Marmor MF, Kemp CM, Knighton RW. SWS (blue) cone hypersensitivity in a newly identified retinal degeneration. Invest Ophthalmol Vis Sci. 1990;31(5):827–38.

    CAS  PubMed  Google Scholar 

  61. Roman AJ, Jacobson SG. S cone-driven but not S cone-type electroretinograms in the enhanced S cone syndrome. Exp Eye Res. 1991;53(5):685–90. https://doi.org/10.1016/0014-4835(91)90230-c.

    Article  CAS  PubMed  Google Scholar 

  62. Kaufman SJ, Goldberg MF, Orth DH, Fishman GA, Tessler H, Mizuno K. Autosomal dominant vitreoretinochoroidopathy. Arch Ophthalmol. 1982;100(2):272–8. https://doi.org/10.1001/archopht.1982.01030030274008.

    Article  CAS  PubMed  Google Scholar 

  63. Vincent A, McAlister C, Vandenhoven C, Heon E. BEST1-related autosomal dominant vitreoretinochoroidopathy: a degenerative disease with a range of developmental ocular anomalies. Eye (Lond). 2011;25(1):113–8. https://doi.org/10.1038/eye.2010.165.

    Article  CAS  PubMed  Google Scholar 

  64. Yardley J, Leroy BP, Hart-Holden N, Lafaut BA, Loeys B, Messiaen LM, et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci. 2004;45(10):3683–9. https://doi.org/10.1167/iovs.04-0550.

    Article  PubMed  Google Scholar 

  65. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2000;97(23):12758–63. https://doi.org/10.1073/pnas.220402097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bae, S.H. (2022). Hereditary Vitreoretinal Degenerations. In: Yu, HG. (eds) Inherited Retinal Disease. Springer, Singapore. https://doi.org/10.1007/978-981-16-7337-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7337-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7336-8

  • Online ISBN: 978-981-16-7337-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics