Skip to main content

Other Macular Dystrophies 2

  • Chapter
  • First Online:
Inherited Retinal Disease
  • 469 Accesses

Abstract

The differential diagnosis of macular dystrophies may be challenging because of their overlapping clinical phenotypes. Genetic testing may contribute to define and diagnose these diseases accurately. This chapter deals with several macular dystrophies, including Sorsby fundus dystrophy, North Carolina macular dystrophy, Doyne honeycomb retinal dystrophy, and Bietti’s crystalline dystrophy, in which gene variants have been identified as a cause of the disease. The purpose of this chapter is to provide an overview of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 January 2022

    This chapter was inadvertently published with missing references in figures 14.1 and 14.2 which has now been corrected as below:

References

  1. Sorsby A, Mason MEJ, Gardener N. A fundus dystrophy with unusual features (late onset and dominant inheritance of a central retinal lesion showing oedema, haemorrhage and exudates developing into generalised choroidal atrophy with massive pigment proliferation). Br J Ophthalmol. 1949;33(2):67.

    Article  CAS  Google Scholar 

  2. Weber BH, Vogt G, Pruett RC, Stöhr H, Felbor U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet. 1994;8(4):352–6.

    Article  CAS  Google Scholar 

  3. Felbor U, Stohr H, Amann T, Schonherr U, Weber BH. A novel Ser156Cys mutation in the tissue inhibitor of metalloproteinases-3 (TIMP3) in Sorsby’s fundus dystrophy with unusual clinical features. Hum Mol Genet. 1995;4(12):2415–6. https://doi.org/10.1093/hmg/4.12.2415.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson SG, Cideciyan AV, Bennett J, Kingsley RM, Sheffield VC, Stone EM. Novel mutation in the TIMP3 gene causes Sorsby fundus dystrophy. Arch Ophthalmol. 2002;120(3):376–9. https://doi.org/10.1001/archopht.120.3.376.

    Article  CAS  PubMed  Google Scholar 

  5. Langton KP, Barker MD, McKie N. Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby’s fundus dystrophy mutation. J Biol Chem. 1998;273(27):16778–81. https://doi.org/10.1074/jbc.273.27.16778.

    Article  CAS  PubMed  Google Scholar 

  6. Langton KP, McKie N, Curtis A, Goodship JA, Bond PM, Barker MD, et al. A novel tissue inhibitor of metalloproteinases-3 mutation reveals a common molecular phenotype in Sorsby’s fundus dystrophy. J Biol Chem. 2000;275(35):27027–31. https://doi.org/10.1074/jbc.M909677199.

    Article  CAS  PubMed  Google Scholar 

  7. Langton KP, McKie N, Smith BM, Brown NJ, Barker MD. Sorsby’s fundus dystrophy mutations impair turnover of TIMP-3 by retinal pigment epithelial cells. Hum Mol Genet. 2005;14(23):3579–86. https://doi.org/10.1093/hmg/ddi385.

    Article  CAS  PubMed  Google Scholar 

  8. Majid MA, Smith VA, Easty DL, Baker AH, Newby AC. Sorsby’s fundus dystrophy mutant tissue inhibitors of metalloproteinase-3 induce apoptosis of retinal pigment epithelial and MCF-7 cells. FEBS Lett. 2002;529(2–3):281–5.

    Article  CAS  Google Scholar 

  9. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003;9(4):407–15. https://doi.org/10.1038/nm846.

    Article  CAS  PubMed  Google Scholar 

  10. Sivaprasad S, Webster AR, Egan CA, Bird AC, Tufail A. Clinical course and treatment outcomes of Sorsby fundus dystrophy. Am J Ophthalmol. 2008;146(2):228–34. https://doi.org/10.1016/j.ajo.2008.03.024.

    Article  PubMed  Google Scholar 

  11. Hamilton WK, Ewing CC, Ives EJ, Carruthers JD. Sorsby’s fundus dystrophy. Ophthalmology. 1989;96(12):1755–62. https://doi.org/10.1016/s0161-6420(89)32647-9.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobson SG, Cideciyan AV, Regunath G, Rodriguez FJ, Vandenburgh K, Sheffield VC, et al. Night blindness in Sorsby’s fundus dystrophy reversed by vitamin A. Nat Genet. 1995;11(1):27–32.

    Article  CAS  Google Scholar 

  13. Gliem M, Muller PL, Mangold E, Holz FG, Bolz HJ, Stohr H, et al. Sorsby fundus dystrophy: novel mutations, novel phenotypic characteristics, and treatment outcomes. Invest Ophthalmol Vis Sci. 2015;56(4):2664–76. https://doi.org/10.1167/iovs.14-15733.

    Article  CAS  PubMed  Google Scholar 

  14. Small KW. North Carolina macular dystrophy, revisited. Ophthalmology. 1989;96(12):1747–54. https://doi.org/10.1016/s0161-6420(89)32655-8.

    Article  CAS  PubMed  Google Scholar 

  15. Small KW, Killian J, McLean WC. North Carolina’s dominant progressive foveal dystrophy: how progressive is it? Br J Ophthalmol. 1991;75(7):401–6. https://doi.org/10.1136/bjo.75.7.401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Small KW, Weber JL, Hung WY, Vance J, Roses A, Pericak-Vance M. North Carolina macular dystrophy: exclusion map using RFLPs and microsatellites. Genomics. 1991;11(3):763–6. https://doi.org/10.1016/0888-7543(91)90087-u.

    Article  CAS  PubMed  Google Scholar 

  17. Michaelides M, Johnson S, Tekriwal AK, Holder GE, Bellmann C, Kinning E, et al. An early-onset autosomal dominant macular dystrophy (MCDR3) resembling North Carolina macular dystrophy maps to chromosome 5. Invest Ophthalmol Vis Sci. 2003;44(5):2178–83. https://doi.org/10.1167/iovs.02-1094.

    Article  PubMed  Google Scholar 

  18. Rosenberg T, Roos B, Johnsen T, Bech N, Scheetz TE, Larsen M, et al. Clinical and genetic characterization of a Danish family with North Carolina macular dystrophy. Mol Vis. 2010;16:2659–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Doyne RW. Peculiar condition of choroiditis occurring in several members of the same family. Trans Ophthalmol Soc UK. 1899;19:71.

    Google Scholar 

  20. Vaclavik V, Munier FL. Malattia Leventinese (autosomal dominant drusen). In: Querques G, Souied E, editors. Macular dystrophies. Cham: Springer; 2016. p. 39–51.

    Chapter  Google Scholar 

  21. Forni S, Babel J. Etude clinique et histologique de la malattia leventinese. Ophthalmologica. 1962;143(5):313–22.

    Article  CAS  Google Scholar 

  22. Stone EM, Lotery AJ, Munier FL, Heon E, Piguet B, Guymer RH, et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet. 1999;22(2):199–202. https://doi.org/10.1038/9722.

    Article  CAS  PubMed  Google Scholar 

  23. Marmorstein LY, Munier FL, Arsenijevic Y, Schorderet DF, McLaughlin PJ, Chung D, et al. Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci U S A. 2002;99(20):13067–72. https://doi.org/10.1073/pnas.202491599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu L, Garland D, Yang Z, Shukla D, Rajendran A, Pearson E, et al. The R345W mutation in EFEMP1 is pathogenic and causes AMD-like deposits in mice. Hum Mol Genet. 2007;16(20):2411–22. https://doi.org/10.1093/hmg/ddm198.

    Article  CAS  PubMed  Google Scholar 

  25. Stanton JB, Marmorstein AD, Zhang Y, Marmorstein LY. Deletion of Efemp1 is protective against the development of sub-RPE deposits in mouse eyes. Invest Ophthalmol Vis Sci. 2017;58(3):1455–61. https://doi.org/10.1167/iovs.16-20955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerber DM, Munier FL, Niemeyer G. Cross-sectional study of visual acuity and electroretinogram in two types of dominant drusen. Invest Ophthalmol Vis Sci. 2003;44(2):493–6. https://doi.org/10.1167/iovs.01-0787.

    Article  PubMed  Google Scholar 

  27. Haimovici R, Wroblewski J, Piguet B, Fitzke FW, Holder GE, Arden GB, et al. Symptomatic abnormalities of dark adaptation in patients with EFEMP1 retinal dystrophy (Malattia Leventinese/Doyne honeycomb retinal dystrophy). Eye (Lond). 2002;16(1):7–15. https://doi.org/10.1038/sj.eye.6700018.

    Article  CAS  PubMed  Google Scholar 

  28. Michaelides M, Jenkins SA, Brantley MA, Andrews RM, Waseem N, Luong V, et al. Maculopathy due to the R345W substitution in fibulin-3: distinct clinical features, disease variability, and extent of retinal dysfunction. Invest Ophthalmol Vis Sci. 2006;47(7):3085–97.

    Article  Google Scholar 

  29. Evans K, Gregory CY, Wijesuriya SD, Kermani S, Jay MR, Plant C, et al. Assessment of the phenotypic range seen in Doyne honeycomb retinal dystrophy. Arch Ophthalmol. 1997;115(7):904–10. https://doi.org/10.1001/archopht.1997.01100160074012.

    Article  CAS  PubMed  Google Scholar 

  30. Heon E, Piguet B, Munier F, Sneed SR, Morgan CM, Forni S, et al. Linkage of autosomal dominant radial drusen (malattia leventinese) to chromosome 2p16-21. Arch Ophthalmol. 1996;114(2):193–8. https://doi.org/10.1001/archopht.1996.01100130187014.

    Article  CAS  PubMed  Google Scholar 

  31. Sohn EH, Patel PJ, MacLaren RE, Adatia FA, Pal B, Webster AR, et al. Responsiveness of choroidal neovascular membranes in patients with R345W mutation in fibulin 3 (Doyne honeycomb retinal dystrophy) to anti-vascular endothelial growth factor therapy. Arch Ophthalmol. 2011;129(12):1626–8. https://doi.org/10.1001/archophthalmol.2011.338.

    Article  PubMed  Google Scholar 

  32. Takeuchi T, Hayashi T, Bedell M, Zhang K, Yamada H, Tsuneoka H. A novel haplotype with the R345W mutation in the EFEMP1 gene associated with autosomal dominant drusen in a Japanese family. Invest Ophthalmol Vis Sci. 2010;51(3):1643–50. https://doi.org/10.1167/iovs.09-4497.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang T, Xie X, Cao G, Jiang H, Wu S, Su Z, et al. Malattia leventinese/Doyne honeycomb retinal dystrophy in a Chinese family with mutation of the EFEMP1 gene. Retina. 2014;34(12):2462–71. https://doi.org/10.1097/IAE.0000000000000259.

    Article  PubMed  Google Scholar 

  34. Pager CK, Sarin LK, Federman JL, Eagle R, Hageman G, Rosenow J, et al. Malattia leventinese presenting with subretinal neovascular membrane and hemorrhage. Am J Ophthalmol. 2001;131(4):517–8. https://doi.org/10.1016/s0002-9394(00)00821-7.

    Article  CAS  PubMed  Google Scholar 

  35. Gregory CY, Evans K, Wijesuriya SD, Kermani S, Jay MR, Plant C, et al. The gene responsible for autosomal dominant Doyne’s honeycomb retinal dystrophy (DHRD) maps to chromosome 2p16. Hum Mol Genet. 1996;5(7):1055–9. https://doi.org/10.1093/hmg/5.7.1055.

    Article  CAS  PubMed  Google Scholar 

  36. Song JS, Oh BL, Park UC, Yu HG, Lee EK. Autosomal dominant drusen confirmed by molecular genetics. J Korean Ophthalmol Soc. 2021;62(1):120–126.

    Google Scholar 

  37. Querques G, Guigui B, Leveziel N, Querques L, Bandello F, Souied EH. Multimodal morphological and functional characterization of Malattia Leventinese. Graefes Arch Clin Exp Ophthalmol. 2013;251(3):705–14. https://doi.org/10.1007/s00417-012-2106-5.

    Article  PubMed  Google Scholar 

  38. Guigui B, Leveziel N, Martinet V, Massamba N, Sterkers M, Coscas G, et al. Angiography features of early onset drusen. Br J Ophthalmol. 2011;95(2):238–44. https://doi.org/10.1136/bjo.2009.178400.

    Article  PubMed  Google Scholar 

  39. Kang EY-C, Wang N-K. Bietti’s crystalline dystrophy. In: Cheung G, editor. Hereditary chorioretinal disorders. Singapore: Springer; 2020. p. 119–38.

    Chapter  Google Scholar 

  40. Welch RB. Bietti’s tapetoretinal degeneration with marginal corneal dystrophy crystalline retinopathy. Trans Am Ophthalmol Soc. 1977;75:164–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li A, Jiao X, Munier FL, Schorderet DF, Yao W, Iwata F, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet. 2004;74(5):817–26. https://doi.org/10.1086/383228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lockhart CM, Nakano M, Rettie AE, Kelly EJ. Generation and characterization of a murine model of Bietti crystalline dystrophy. Invest Ophthalmol Vis Sci. 2014;55(9):5572–81. https://doi.org/10.1167/iovs.13-13717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee J, Jiao X, Hejtmancik JF, Kaiser-Kupfer M, Chader GJ. Identification, isolation, and characterization of a 32-kDa fatty acid-binding protein missing from lymphocytes in humans with Bietti crystalline dystrophy (BCD). Mol Genet Metab. 1998;65(2):143–54. https://doi.org/10.1006/mgme.1998.2723.

    Article  CAS  PubMed  Google Scholar 

  44. Lee J, Jiao X, Hejtmancik JF, Kaiser-Kupfer M, Gahl WA, Markello TC, et al. The metabolism of fatty acids in human Bietti crystalline dystrophy. Invest Ophthalmol Vis Sci. 2001;42(8):1707–14.

    CAS  PubMed  Google Scholar 

  45. Kelly EJ, Nakano M, Rohatgi P, Yarov-Yarovoy V, Rettie AE. Finding homes for orphan cytochrome P450s: CYP4V2 and CYP4F22 in disease states. Mol Interv. 2011;11(2):124–32. https://doi.org/10.1124/mi.11.2.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaiser-Kupfer MI, Chan C-C, Markello TC, Crawford MA, Caruso RC, Csaky KG, et al. Clinical biochemical and pathologic correlations in Bietti’s crystalline dystrophy. Am J Ophthalmol. 1994;118(5):569–82.

    Article  CAS  Google Scholar 

  47. Halford S, Liew G, Mackay DS, Sergouniotis PI, Holt R, Broadgate S, et al. Detailed phenotypic and genotypic characterization of Bietti crystalline dystrophy. Ophthalmology. 2014;121(6):1174–84. https://doi.org/10.1016/j.ophtha.2013.11.042.

    Article  PubMed  Google Scholar 

  48. Yuzawa M, Mae Y, Matsui M. Bietti’s crystalline retinopathy. Ophthalmic Paediatr Genet. 1986;7(1):9–20.

    Article  CAS  Google Scholar 

  49. Rossi S, Testa F, Li A, Yaylacioglu F, Gesualdo C, Hejtmancik JF, et al. Clinical and genetic features in Italian Bietti crystalline dystrophy patients. Br J Ophthalmol. 2013;97(2):174–9. https://doi.org/10.1136/bjophthalmol-2012-302469.

    Article  PubMed  Google Scholar 

  50. Toto L, Carpineto P, Parodi MB, Di Antonio L, Mastropasqua A, Mastropasqua L. Spectral domain optical coherence tomography and in vivo confocal microscopy imaging of a case of Bietti’s crystalline dystrophy. Clin Exp Optom. 2013;96(1):39–45. https://doi.org/10.1111/j.1444-0938.2012.00784.x.

    Article  PubMed  Google Scholar 

  51. Wilson DJ, Weleber RG, Klein ML, Welch RB, Green WR. Bietti’s crystalline dystrophy: a clinicopathologic correlative study. Arch Ophthalmol. 1989;107(2):213–21.

    Article  CAS  Google Scholar 

  52. Fong AM, Koh A, Lee K, Ang CL. Bietti’s crystalline dystrophy in Asians: clinical, angiographic and electrophysiological characteristics. Int Ophthalmol. 2009;29(6):459–70. https://doi.org/10.1007/s10792-008-9266-7.

    Article  PubMed  Google Scholar 

  53. Yanagi Y, Tamaki Y, Takahashi H, Sekine H, Mori M, Hirato T, et al. Clinical and functional findings in crystalline retinopathy. Retina. 2004;24(2):267–74.

    Article  Google Scholar 

  54. Nadim F, Walid H, Adib J. The differential diagnosis of crystals in the retina. Int Ophthalmol. 2001;24(3):113–21.

    Article  CAS  Google Scholar 

  55. Fuerst NM, Serrano L, Han G, Morgan JI, Maguire AM, Leroy BP, et al. Detailed functional and structural phenotype of Bietti crystalline dystrophy associated with mutations in CYP4V2 complicated by choroidal neovascularization. Ophthalmic Genet. 2016;37(4):445–52. https://doi.org/10.3109/13816810.2015.1126616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, I.H. (2022). Other Macular Dystrophies 2. In: Yu, HG. (eds) Inherited Retinal Disease. Springer, Singapore. https://doi.org/10.1007/978-981-16-7337-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7337-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7336-8

  • Online ISBN: 978-981-16-7337-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics