Skip to main content

Photoelectrochemical Water Splitting with Nitride-Based Photoelectrodes

  • Chapter
  • First Online:
Photoelectrochemical Hydrogen Generation

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 760 Accesses

Abstract

In semiconductor photoelectrochemical (PEC) cells, nitride-based materials have attained immense interest because of their suitable band position and bandgap, facile and low-cost synthesis, good thermal stability, and low toxicity. Mostly, two distinct classes of nitride materials have been explored in PEC cells-(i) metal nitrides and (ii) metal-free graphitic carbon nitride (g-CN). Although the use of g-CN in PEC cells is more promising due to its low photocorrosion and long-term stability, the development of photoelectrodes with g-CN is still in its primary stage. Besides, the low photocurrent density produced by g-CN photoelectrodes restricts its application. In contrast, metal-based nitrides are widely explored as photoelectrodes, and tremendous progress in the synthetic and application front has been achieved. Doping and substitution in the materials, integration with different cocatalysts, and fabrication of composite photoelectrodes have been demonstrated to substantially improve the photocurrent density. Moreover, efforts have been made for a thorough understanding of the photochemical and photoelectrochemical processes, including charge separation, recombination, charge transport, and interfacial processes. In this chapter, we describe the basic principles of designing nitride-based PEC cells, achievements, and deficiencies in nitride-based photoelectrodes. A detailed discussion on the application of the nitride-based photoelectrodes in photoelectrochemical water splitting is included, along with a perspective for the future application of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing J, Fang WQ, Zhao HJ, Yang HG (2012) Chem Asian J 7:642–657

    Article  Google Scholar 

  2. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Chem Soc Rev 46:4645–4660

    Article  Google Scholar 

  3. Sayama K (2018) ACS Energy Lett 3:1093–1101

    Article  Google Scholar 

  4. Volokh M, Peng G, Barrio J, Shalom M (2019) Angew Chem Int Ed 58:6138–6151

    Article  Google Scholar 

  5. Lewis NS (2016) Nat Nanotechnol 11:1010–1019

    Article  Google Scholar 

  6. Boddy PJ (1968) J Electrochem Soc 115:199–203

    Article  Google Scholar 

  7. Fujishima A, Honda K (1972) Nat Commun 238:37–38

    Article  Google Scholar 

  8. Ros C, Andreu T, Morante JR (2020) J Mater Chem A 8:10625–10669

    Article  Google Scholar 

  9. Yin J, Jin J, Lin H, Yin Z, Li J, Lu M, Guo L, Xi P, Tang Y, Yan C-H (2020) Adv Sci 7:1903070

    Article  Google Scholar 

  10. Hien TT, Quang ND, Kim C, Kim D (2019) Nano Energy 57:660–669

    Article  Google Scholar 

  11. Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW (2015) Chem Mater 27:7549–7558

    Article  Google Scholar 

  12. Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev 43:7520–7535

    Article  Google Scholar 

  13. Cong Y, Park HS, Wang S, Dang HX, Fan F-RF, Mullins CB, Bard AJ (2012) J Phys Chem C 116:14541–14550

    Article  Google Scholar 

  14. Feng X, LaTempa TJ, Basham JI, Mor GK, Varghese OK, Grimes CA (2010) Nano Lett 10:948–952

    Article  Google Scholar 

  15. Pinaud BA, Vesborg PCK, Jaramillo TF (2012) J Phys Chem C 116:15918–15924

    Article  Google Scholar 

  16. Wu Y, Lazic P, Hautier G, Persson K, Ceder G (2013) Energy Environ Sci 6:157–168

    Article  Google Scholar 

  17. Li Y, Zhang L, Torres-Pardo A, González-Calbet JM, Ma Y, Oleynikov P, Terasaki O, Asahina S, Shima M, Cha D, Zhao L, Takanabe K, Kubota J, Domen K (2013) Nat Commun 4:2566

    Article  Google Scholar 

  18. Xiao M, Luo B, Lyu M, Wang S, Wang L (2018) Adv Energy Mater 8:1701605

    Article  Google Scholar 

  19. Ziani A, Nurlaela E, Dhawale DS, Silva DA, Alarousu E, Mohammed OF, Takanabe K (2015) Phys ChemChemPhys 17:2670–2677

    Google Scholar 

  20. Kibria MG, Mi Z (2016) J Mater Chem A 4:2801–2820

    Article  Google Scholar 

  21. Wang C, Hisatomi T, Minegishi T, Nakabayashi M, Shibata N, Katayama M, Domen K (2016) Chem Sci 7:5821–5826

    Article  Google Scholar 

  22. Kado Y, Lee C-Y, Lee K, Müller J, Moll M, Spiecker E, Schmuki P (2012) Chem Commun 48:8685–8687

    Article  Google Scholar 

  23. Seo J, Takata T, Nakabayashi M, Hisatomi T, Shibata N, Minegishi T, Domen K (2015) J Am Chem Soc 137:12780–12783

    Article  Google Scholar 

  24. Pei L, Lv B, Wang S, Yu Z, Yan S, Abe R, Zou Z, Appl ACS (2018) Energy Mater 1:4150–4157

    Google Scholar 

  25. Ikeda T, Xiong A, Yoshinaga T, Maeda K, Domen K, Teranishi T (2013) J Phys Chem C 117:2467–2473

    Article  Google Scholar 

  26. Kamimura J, Bogdanoff P, Abdi FF, Lähnemann J, van de Krol R, Riechert H, Geelhaar L (2017) J Phys Chem C 121:12540–12545

    Article  Google Scholar 

  27. Liu G, Karuturi SK, Simonov AN, Fekete M, Chen H, Nasiri N, Le NH, Narangari PR, Lysevych M, Gengenbach TR, Lowe A, Tan HH, Jagadish C, Spiccia L, Tricoli A (2016) Adv Energy Mater 6:1600697

    Article  Google Scholar 

  28. Haleem AA, Majumder S, Perumandla N, Zahran ZN, Naruta Y (2017) J Phys Chem C 121:20093–20100

    Article  Google Scholar 

  29. Higashi M, Domen K, Abe R (2011) Energy Environ Sci 4:4138–4147

    Article  Google Scholar 

  30. He Y, Ma P, Zhu S, Liu M, Dong Q, Espano J, Yao X, Wang D (2017) Joule 1:831–842

    Article  Google Scholar 

  31. Li M, Luo W, Cao D, Zhao X, Li Z, Yu T, Zou Z (2013) Angew Chem Int Ed 52:11016–11020

    Article  Google Scholar 

  32. Go H, Akio I, Tsuyoshi T, Michikazu H, Kazunari D (2002) Chem. Lett 31:736–737

    Google Scholar 

  33. Wang L, Dionigi F, Nguyen NT, Kirchgeorg R, Gliech M, Grigorescu S, Strasser P, Schmuki P (2015) Chem Mater 27:2360–2366

    Article  Google Scholar 

  34. Liu G, Ye S, Yan P, Xiong F, Fu P, Wang Z, Chen Z, Shi J, Li C (2016) Energy Environ Sci 9:1327–1334

    Article  Google Scholar 

  35. AlOtaibi B, Fan S, Vanka S, Kibria MG, Mi Z (2015) Nano Lett 15:6821–6828

    Article  Google Scholar 

  36. Caccamo L, Hartmann J, Fàbrega C, Estradé S, Lilienkamp G, Prades JD, Hoffmann MWG, Ledig J, Wagner A, Wang X, Lopez-Conesa L, Peiró F, Rebled JM, Wehmann H-H, Daum W, Shen H, Waag A, Appl ACS (2014) Mater Interfaces 6:2235–2240

    Article  Google Scholar 

  37. AlOtaibi B, Nguyen HPT, Zhao S, Kibria MG, Fan S, Mi Z (2013) Nano Lett 13:4356–4361

    Article  Google Scholar 

  38. Park J-H, Mandal A, Kang S, Chatterjee U, Kim JS, Park B-G, Kim M-D, Jeong K-U, Lee C-R (2016) Sci Rep 6:31996

    Article  Google Scholar 

  39. Zhou Y, Chen G, Yu Y, Zhao L, Yu Q, He Q (2016) Catal. Sci Technol 6:1033–1041

    Google Scholar 

  40. Liang Q, Brocks G, Zhang X, Bieberle-Hütter A (2019) J Phys Chem C 123:26289–26298

    Article  Google Scholar 

  41. Liu SY, Sheu JK, Lin Y-C, Tu SJ, Huang FW, Lee ML, Lai WC (2012) Opt Express 20:A678–A683

    Article  Google Scholar 

  42. Kibria MG, Qiao R, Yang W, Boukahil I, Kong X, Chowdhury FA, Trudeau ML, Ji W, Guo H, Himpsel FJ, Vayssieres L, Mi Z (2016) Adv Mater 28:8388–8397

    Article  Google Scholar 

  43. Pan H, Gu B, Eres G, Zhang Z (2010) J. Chem. Phys 132:104501

    Google Scholar 

  44. Grigorescu S, Bärhausen B, Wang L, Mazare A, Yoo JE, Hahn R, Schmuki P (2015) Electrochem Commun 51:85–88

    Article  Google Scholar 

  45. Ma SSK, Hisatomi T, Maeda K, Moriya Y, Domen K (2012) J Am Chem Soc 134:19993–19996

    Article  Google Scholar 

  46. Liu S-Y, Sheu JK, Lin Y-C, Chen Y-T, Tu SJ, Lee ML, Lai WC (2013) Opt Express 21:A991–A996

    Article  Google Scholar 

  47. Deng J, Su Y, Liu D, Yang P, Liu B, Liu C (2019) Chem Rev 119:9221–9259

    Article  Google Scholar 

  48. Murthy DHK, Matsuzaki H, Wang Z, Suzuki Y, Hisatomi T, Seki K, Inoue Y, Domen K, Furube A (2019) Chem Sci 10:5353–5362

    Article  Google Scholar 

  49. Nandjou F, Haussener S (2017) J Phys D Appl Phys 50:124002

    Google Scholar 

  50. He Y, James E Thorne, Wu CH, Ma P, Du C, Dong Q, Guo J, Wang D (2016) Chemistry1:640–655

    Google Scholar 

  51. Nurlaela E, Wang H, Shinagawa T, Flanagan S, Ould-Chikh S, Qureshi M, Mics Z, Sautet P, Le Bahers T, Cánovas E, Bonn M, Takanabe K (2016) ACS Catal 6:4117–4126

    Article  Google Scholar 

  52. Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C (2015) Angew Chem Int Ed 54:3047–3051

    Article  Google Scholar 

  53. Pihosh Y, Minegishi T, Nandal V, Higashi T, Katayama M, Yamada T, Sasaki Y, Seki K, Suzuki Y, Nakabayashi M, Sugiyama M, Domen K (2020) Energy Environ Sci 13:1519–1530

    Article  Google Scholar 

  54. Vequizo JJM, Hojamberdiev M, Teshima K, Yamakata A (2018) J Photochem Photobio A: Chem 358:315–319

    Article  Google Scholar 

  55. Wang Z, Qi Y, Ding C, Fan D, Liu G, Zhao Y, Li C (2016) Chem Sci 7:4391–4399

    Article  Google Scholar 

  56. Hajibabaei H, Little DJ, Pandey A, Wang D, Mi Z, Hamann TW, Appl ACS (2019) Mater Interfaces 11:15457–15466

    Article  Google Scholar 

  57. Higashi T, Nishiyama H, Suzuki Y, Sasaki Y, Hisatomi T, Katayama M, Minegishi T, Seki K, Yamada T, Domen K (2019) Angew Chem Int Ed 58:2300–2304

    Article  Google Scholar 

  58. Hajibabaei H, Zandi O, Hamann TW (2016) Chem Sci 7:6760–6767

    Article  Google Scholar 

  59. Higashi T, Nishiyama H, Otsuka Y, Kawase Y, Sasaki Y, Nakabayashi M, Katayama M, Minegishi T, Shibata N, Takanabe K, Yamada T, Domen K (2020) Chemsuschem 13:1974–1978

    Article  Google Scholar 

  60. Tseng WJ, van Dorp DH, Lieten RR, Vereecken PM, Borghs G (2014) J Phys Chem C 118:29492–29498

    Article  Google Scholar 

  61. Kim H, Bae H, Bang SW, Kim S, Lee SH, Ryu S-W, Ha J-S (2019) Opt Express 27:A206–A215

    Article  Google Scholar 

  62. Arai N, Saito N, Nishiyama H, Domen K, Kobayashi H, Sato K, Inoue Y (2007) Catal Today 129:407–413

    Article  Google Scholar 

  63. Schäfer S, Koch AHR, Cavallini A, Stutzmann M, Sharp ID (2012) J Phys Chem C 116:22281–22286

    Article  Google Scholar 

  64. Kibria MG, Chowdhury FA, Zhao S, Trudeau ML, Guo H, Mi Z (2015) Appl. Phys. Lett 106:113105

    Google Scholar 

  65. Kamimura J, Bogdanoff P, Ramsteiner M, Corfdir P, Feix F, Geelhaar L, Riechert H (2017) Nano Lett 17:1529–1537

    Article  Google Scholar 

  66. Fang Y, Yang J, Yang Y, Wu X, Xiao Z, Zhou F, Song Y (2015) J Phys D: Appl Phys 49:045105

    Google Scholar 

  67. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) J Am Chem Soc 127:8286–8287

    Article  Google Scholar 

  68. Wang Z, Zong X, Gao Y, Han J, Xu Z, Li Z, Ding C, Wang S, Li C, Appl ACS (2017) Mater Interfaces 9:30696–30702

    Article  Google Scholar 

  69. Godin R, Hisatomi T, Domen K, Durrant JR (2018) Chem Sci 9:7546–7555

    Article  Google Scholar 

  70. Boubanga-Tombet S, Wright JB, Lu P, Williams MRC, Li C, Wang GT, Prasankumar RP (2016) ACS Photon 3:2237–2242

    Article  Google Scholar 

  71. DuChene JS, Tagliabue G, Welch AJ, Cheng W-H, Atwater HA (2018) Nano Lett 18:2545–2550

    Article  Google Scholar 

  72. Cao S, Low J, Yu J, Jaroniec M (2015) Adv Mater 27:2150–2176

    Article  Google Scholar 

  73. Ong W-J, Tan LL, Ng YH, Yong ST, Chai SP (2016) Chem Rev 116:7159–7329

    Article  Google Scholar 

  74. Xiong W, Huang F, Zhang RQ (2020) Sustain. Energy Fuels 4:485–503

    Google Scholar 

  75. Lou S, Zhou Z, Shen Y, Zhan Z, Wang J, Liu S, Zhang Y, Appl ACS (2016) Mater Interfaces 8:22287–22294

    Article  Google Scholar 

  76. Huang M, Zhao Y-L, Xiong W, Kershaw SV, Yu Y, Li W, Dudka T, Zhang R-Q (2018) Appl Catal B: Environ 237:783–790

    Article  Google Scholar 

  77. Indra A, Acharjya A, Menezes PW, Merschjann C, Hollmann D, Schwarze M, Aktas M, Friedrich A, Lochbrunner S, Thomas A, Driess M (2017) Angew Chem Int Ed 56:1653–1657

    Article  Google Scholar 

  78. Indra A, Menezes PW, Kailasam K, Hollmann D, Schröder M, Thomas A, Brückner A, Driess M (2016) Chem Commun 52:104–107

    Article  Google Scholar 

  79. Zhang W, Albero J, Xi L, Lange KM, Garcia H, Wang X, Shalom M, Appl ACS (2017) Mater Interfaces 9:32667–32677

    Article  Google Scholar 

  80. Cheng L, Xie S, Zou Y, Ma D, Sun D, Li Z, Wang Z, Shi JW (2019) Int J Hyd Energy 44:4133–4142

    Article  Google Scholar 

  81. Zhang G, Huang C, Wang X (2015) Small 11:1215–1221

    Article  Google Scholar 

  82. Zhang G, Zang S, Lin L, Lan Z-A, Li G, Wang X, Appl ACS (2016) Mater Interfaces 8:2287–2296

    Article  Google Scholar 

  83. Merschjann C, Tschierlei S, Tyborski T, Kailasam K, Orthmann S, Hollmann D, Schedel-Niedrig T, Thomas A, Lochbrunner S (2015) Adv Mater 27:7993–7999

    Article  Google Scholar 

  84. Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y (2018) Nanoscale 10:15624–15631

    Article  Google Scholar 

  85. Noda Y, Merschjann C, Tarábek J, Amsalem P, Koch N, Bojdys MJ (2019) Angew Chem Int Ed 58:9394–9398

    Article  Google Scholar 

  86. Rahman MZ, Kibria MG, Mullins CB (2020) Chem Soc Rev 49:1887–1931

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Indra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, A., Indra, A. (2022). Photoelectrochemical Water Splitting with Nitride-Based Photoelectrodes. In: Kumar, P., Devi, P. (eds) Photoelectrochemical Hydrogen Generation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7285-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7285-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7284-2

  • Online ISBN: 978-981-16-7285-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics