Skip to main content

Millimeter Wave MIMO Antennas

  • Chapter
  • First Online:
Novel Millimetre Wave Antennas for MIMO and 5G Applications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 819))

  • 350 Accesses

Abstract

The multiple-input-multiple-output (MIMO) system has multiple transmitting and receiving antennas to improve the performance of the communication systems. These systems significantly improve the wireless link range and data throughput. Since the mmWave wireless communication has a limited range and reliability, therefore implementation of MIMO at mmWaves would result in improved reception and spectral efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rappaport TS et al (2013) Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1:335–349. https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  2. Dybdal R (1983) Millimeter wave antenna technology. IEEE J Sel Areas Commun 1(4):633–644. https://doi.org/10.1109/JSAC.1983.1145968

    Article  Google Scholar 

  3. Alhalabi RA, Rebeiz GM (2009) High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems. IEEE Trans Antennas Propag 57(11):3672–3676. https://doi.org/10.1109/TAP.2009.2026666

    Article  Google Scholar 

  4. Hussain MT, Sharawi MS, Podilchack S, Antar YMM (2016) Closely packed millimeter-wave MIMO antenna arrays with dielectric resonator elements. In: 2016 10th European conference on antennas and propagation (EuCAP), pp 1–4. https://doi.org/10.1109/EuCAP.2016.7481202

  5. Ali MMM, Sebak AR (2016) Design of compact millimeter wave massive MIMO dual-band (28/38 GHz) antenna array for future 5G communication systems. In: 2016 17th international symposium on antenna technology and applied electromagnetics (ANTEM), pp 1–2. https://doi.org/10.1109/ANTEM.2016.7550213

  6. Hagras A, Denidni TA, Nedil M, Coulibaly Y (2012) Low-mutual coupling antenna array for millimeter-wave MIMO applications. In: Proceedings of the 2012 IEEE international symposium on antennas and propagation, pp 1–2. https://doi.org/10.1109/APS.2012.6348094

  7. Ahmad W, Ali A, Khan WT (2016) Small form factor PIFA antenna design at 28 GHz for 5G applications. In: 2016 IEEE international symposium on antennas and propagation (APSURSI), pp 1747–1748. https://doi.org/10.1109/APS.2016.7696580

  8. Psychoudakis D, Wang Z, Aryanfar F (2013) Dipole array for mm-wave mobile applications. In: 2013 IEEE antennas and propagation society international symposium (APSURSI), pp 660–661. https://doi.org/10.1109/APS.2013.6710990

  9. Dadgarpour A, Zarghooni B, Virdee BS, Denidni TA (2016) One- and two-dimensional beam-switching antenna for millimeter-wave MIMO applications. IEEE Trans Antennas Propag 64(2):564–573. https://doi.org/10.1109/TAP.2015.2508478

    Article  MathSciNet  MATH  Google Scholar 

  10. Dadgarpour A, Sorkherizi MS, Kishk AA, Denidni TA (2016) Single-element antenna loaded with artificial mu-near-zero structure for 60 GHz MIMO applications. IEEE Trans Antennas Propag 64(12):5012–5019. https://doi.org/10.1109/TAP.2016.2618485

    Article  Google Scholar 

  11. Briqech Z, Sebak AR, Denidni TA (2016) Wide-scan MSC-AFTSA array-fed grooved spherical lens antenna for millimeter-wave MIMO applications. IEEE Trans Antennas Propag 64(7):2971–2980. https://doi.org/10.1109/TAP.2016.2565704

    Article  Google Scholar 

  12. Ho CH et al (2013) Performance evaluation of a 60 GHz radio-over-fiber system employing MIMO and OFDM modulation. IEEE J Sel Areas Commun 31(12):780–787. https://doi.org/10.1109/JSAC.2013.SUP2.12130010

    Article  Google Scholar 

  13. Zeng Y, Zhang R, Chen ZN (2014) Electromagnetic lens-focusing antenna enabled massive MIMO: performance improvement and cost reduction. IEEE J Sel Areas Commun 32(6):1194–1206. https://doi.org/10.1109/JSAC.2014.2328151

    Article  Google Scholar 

  14. Zeng Y, Zhang R (2016) Millimeter wave MIMO with lens antenna array: a new path division multiplexing paradigm. IEEE Trans Commun 64(4):1557–1571. https://doi.org/10.1109/TCOMM.2016.2533490

    Article  Google Scholar 

  15. Hong W, Baek K, Lee Y, Kim YG (2014) Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5G cellular applications. In: 2014 IEEE MTT-S international microwave symposium (IMS2014), pp 1–4. https://doi.org/10.1109/MWSYM.2014.6848377

  16. Zhou H, Aryanfar F (2013) Millimeter-wave open ended SIW antenna with wide beam coverage. In: 2013 IEEE antennas and propagation society international symposium (APSURSI), pp 658–659. https://doi.org/10.1109/APS.2013.6710989

  17. Dadgarpour A, Sorkherizi MS, Kishk AA (2016) Wideband low-loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding. IEEE Trans Antennas Propag 64(12):5094–5101. https://doi.org/10.1109/TAP.2016.2620522

    Article  Google Scholar 

  18. Dadgarpour A, Zarghooni B, Virdee BS, Denidni TA (2015) Beam-deflection using gradient refractive-index media for 60-GHz end-fire antenna. IEEE Trans Antennas Propag 63(8):3768–3774. https://doi.org/10.1109/TAP.2015.2438396

    Article  MathSciNet  MATH  Google Scholar 

  19. Sharawi MS, Podilchak SK, Hussain MT, Antar YMM (2017) Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices. Antennas Propag IET Microw 11(2):287–293. https://doi.org/10.1049/iet-map.2016.0457

    Article  Google Scholar 

  20. Gupta S, Briqech Z, Sebak AR, Denidni TA (2017) Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications. IEEE Antennas Wirel Propag Lett 16:2763–2766. https://doi.org/10.1109/LAWP.2017.2745050

    Article  Google Scholar 

  21. Al-Hasan MJ, Denidni TA, Sebak AR (2015) Millimeter-wave compact EBG structure for mutual coupling reduction applications. IEEE Trans Antennas Propag 63(2):823–828. https://doi.org/10.1109/TAP.2014.2381229

    Article  Google Scholar 

  22. Bait-Suwailam MM, Boybay MS, Ramahi OM (2010) Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications. IEEE Trans Antennas Propag 58(9):2894–2902. https://doi.org/10.1109/TAP.2010.2052560

    Article  Google Scholar 

  23. Sharawi MS, Numan AB, Aloi DN (2013) Isolation improvement in a dual-band dual-element MIMO antenna system using capacitively loaded loops. Prog Electromagn Res 134:247–266. https://doi.org/10.2528/PIER12090610

    Article  Google Scholar 

  24. Szabo Z, Park G-H, Hedge R, Li E-P (2010) A unique extraction of metamaterial parameters based on Kramers-Kronig relationship. IEEE Trans Microw Theory Tech 58(10):2646–2653. https://doi.org/10.1109/TMTT.2010.2065310

    Article  Google Scholar 

  25. Wani Z, Abegaonkar MP, Koul SK (2018) A 28-GHz antenna for 5G MIMO applications. Prog Electromagnet Res Lett 78:73–79. https://doi.org/10.2528/PIERL18070303

  26. Wani Z, Vishwakarma DK (2016) An ultrawideband antenna for portable MIMO terminals. Microw Opt Technol Lett 58(1):51–57. https://doi.org/10.1002/mop.29498

    Article  Google Scholar 

  27. Vaughan RG, Andersen JB (1987) Antenna diversity in mobile communications. IEEE Trans Veh Technol 36(4):149–172. https://doi.org/10.1109/T-VT.1987.24115

    Article  Google Scholar 

  28. Sharawi MS (2017) Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]. IEEE Antennas Propag Mag 59(2):162–170. https://doi.org/10.1109/MAP.2017.2658346

    Article  Google Scholar 

  29. Tian R, Lau BK, Ying Z (2011) Multiplexing efficiency of MIMO antennas. IEEE Antennas Wirel Propag Lett 10:183–186. https://doi.org/10.1109/LAWP.2011.2125773

    Article  Google Scholar 

  30. Hsu YW, Huang TC, Lin HS, Lin YC (2017) Dual-polarized quasi Yagi-Uda antennas with endfire radiation for millimeter-wave MIMO terminals. IEEE Trans Antennas Propag 65(12):6282–6289. https://doi.org/10.1109/TAP.2017.2734238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiban Kishen Koul .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, S.K., Wani, Z. (2021). Millimeter Wave MIMO Antennas. In: Novel Millimetre Wave Antennas for MIMO and 5G Applications. Lecture Notes in Electrical Engineering, vol 819. Springer, Singapore. https://doi.org/10.1007/978-981-16-7278-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7278-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7277-4

  • Online ISBN: 978-981-16-7278-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics