Skip to main content

Enhancing Photosynthetic Efficiency of Crop Through Metabolic Engineering

Abstract

Several current findings have shown that enhancing the photosynthetic process through genetic engineering could provide a technique to boost crop yield. Photosynthesis is the primary predictor of crop output and crop efficacy in capturing light, and converting it into biomass during the growing season, which is the main indicator of yield attributes, whether its biomass or grain. Boosting crop photosynthetic performance by metabolic changes in a changing environment is another area where information is lacking. In the present chapter, we would discuss present and prospective ways for boosting photosynthetic efficiency under different climate conditions, as well as their implications on photosynthesis activity. Our objective is to analyze the existing projects being made to better photosynthesis effectiveness. This paper investigates the impact of modifying the Calvin-Benson (CB) cycle, photorespiration, and electron transport on biomass and seeds yield. It highlights some surprise findings where harmful impacts were seen. In the preceding part, we discussed future possibilities such as integrating polygenic modulation of photosynthetic carbon absorption to boost yield potential and features that address yield variability.

Keywords

  • Photosynthetic efficiency
  • Metabolic pathways
  • Enzymes

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelhamid, A., Elshinnawy, M., Farrag, F., Abidi, S., Adom, K., Liu, R., Agrahar-Murugkar, D., Pal, P., Agte, V., & Tarwadi, K. (2005). Bibliography from web of science March 2005, Golden rice and (pro)-vitamin A. Bioresource Technology, 60(1), 91–93.

    Google Scholar 

  • Ahmad, N., & Mukhtar, Z. (2017). Genetic manipulations in crops: Challenges and opportunities. Genomics, 109(5–6), 494–505.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ahuja, I., de Vos, R. C., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15(12), 664–674.

    CrossRef  CAS  PubMed  Google Scholar 

  • Allen, L. H., Jr., Kakani, V. G., Vu, J. C., & Boote, K. J. (2011). Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 168(16), 1909–1918.

    CrossRef  CAS  PubMed  Google Scholar 

  • Andrews, M., Lea, P. J., Raven, J., & Lindsey, K. (2004). Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Annals of Applied Biology, 145(1), 25–40.

    CrossRef  CAS  Google Scholar 

  • Araus, J., Slafer, G., Reynolds, M., & Royo, C. (2002). Plant breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 89(7), 925–940.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77.

    CrossRef  CAS  PubMed  Google Scholar 

  • Atia, A., Barhoumi, Z., Debez, A., Hkiri, S., Abdelly, C., Smaoui, A., Haouari, C. C., & Gouia, H. (2018). Plant hormones: Potent targets for engineering salinity tolerance in plants. In Salinity responses and tolerance in plants (Vol. 1, pp. 159–184). Springer.

    CrossRef  Google Scholar 

  • Barber, J. (2009). Photosynthetic energy conversion: Natural and artificial. Chemical Society Reviews, 38(1), 185–196.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S., & Mills, P. (2012). Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biological Reviews, 87(1), 52–71.

    CrossRef  PubMed  Google Scholar 

  • Bevan, M. W., Uauy, C., Wulff, B. B., Zhou, J., Krasileva, K., & Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543(7645), 346–354.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bhandari, H., Bhanu, A., Srivastava, K., Singh, M., & Shreya, H. A. (2017). Assessment of genetic diversity in crop plants – An overview. Advances in Plants & Agriculture Research, 7(3), 00255.

    Google Scholar 

  • Bhattacharjee, S., & Saha, A. K. (2014). Plant water-stress response mechanisms. In Approaches to plant stress and their management (pp. 149–172). Springer.

    CrossRef  Google Scholar 

  • Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Blankenship, R. E., Tiede, D. M., Barber, J., Brudvig, G. W., Fleming, G., Ghirardi, M., Gunner, M., Junge, W., Kramer, D. M., & Melis, A. (2011). Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332(6031), 805–809.

    CrossRef  CAS  PubMed  Google Scholar 

  • Borrill, P., Harrington, S. A., & Uauy, C. (2019). Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. The Plant Journal, 97(1), 56–72.

    CAS  PubMed  Google Scholar 

  • Bradshaw, J. E. (2017). Plant breeding: Past, present and future. Euphytica, 213(3), 60.

    CrossRef  CAS  Google Scholar 

  • Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., & Pink, D. (2003). The molecular analysis of leaf senescence – A genomics approach. Plant Biotechnology Journal, 1(1), 3–22.

    CrossRef  CAS  PubMed  Google Scholar 

  • Cammarano, D., Rötter, R. P., Asseng, S., Ewert, F., Wallach, D., Martre, P., Hatfield, J. L., Jones, J. W., Rosenzweig, C., & Ruane, A. C. (2016). Uncertainty of wheat water use: simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 198, 80–92.

    CrossRef  Google Scholar 

  • Carter, T. E., Jr., Nelson, R. L., Sneller, C. H., & Cui, Z. (2004). Genetic diversity in soybean. Soybeans: Improvement, production, and uses, 16, 303–416.

    Google Scholar 

  • Cavender-Bares, J. (2019). Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist, 221(2), 669–692.

    CrossRef  PubMed  Google Scholar 

  • Chaudhry, S., & Sidhu, G. P. S. (2021). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 1–31.

    Google Scholar 

  • Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560.

    CrossRef  CAS  PubMed  Google Scholar 

  • Chiffoleau, Y., & Desclaux, D. (2006). Participatory plant breeding: The best way to breed for sustainable agriculture? International Journal of Agricultural Sustainability, 4(2), 119–130.

    CrossRef  Google Scholar 

  • Chmielowska-Bąk, J., & Deckert, J. (2021). Plant recovery after metal stress—A review. Plants, 10(3), 450.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahal, K., Li, X.-Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario – A current overview. Frontiers in Plant Science, 10, 563.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • DaMatta, F. B. M., Avila, R. T., Cardoso, A. A., Martins, S. C., & Ramalho, J. C. (2018). Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A review. Journal of Agricultural and Food Chemistry, 66(21), 5264–5274.

    CrossRef  CAS  PubMed  Google Scholar 

  • Dann, M., & Leister, D. (2017). Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730), 20160380.

    CrossRef  CAS  Google Scholar 

  • De Souza, A. P., Massenburg, L. N., Jaiswal, D., Cheng, S., Shekar, R., & Long, S. P. (2017). Rooting for cassava: Insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytologist, 213(1), 50–65.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dhillon, R., & von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass and Bioenergy, 48, 75–89.

    CrossRef  Google Scholar 

  • Egilla, J., Davies, F., & Boutton, T. (2005). Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica, 43(1), 135–140.

    CrossRef  CAS  Google Scholar 

  • El-Sharkawy, M. A. (2004). Cassava biology and physiology. Plant Molecular Biology, 56(4), 481–501.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ennahli, S., & Earl, H. J. (2005). Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45(6), 2374–2382.

    CrossRef  CAS  Google Scholar 

  • Erb, T. J., & Zarzycki, J. (2016). Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation. Current Opinion in Chemical Biology, 34, 72–79.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, L., & Fischer, R. (1999). Yield potential: Its definition, measurement, and significance. Crop Science, 39(6), 1544–1551.

    CrossRef  Google Scholar 

  • Fageria, N. K., & Baligar, V. (2005). Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy, 88, 97–185.

    CrossRef  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 153–188.

    Google Scholar 

  • Fathi, A., & Tari, D. B. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1–6.

    CrossRef  Google Scholar 

  • Fischer, R., Byerlee, D. R., & Edmeades, G. O. (2009) Can technology deliver on the yield challenge to 2050?

    Google Scholar 

  • Gaastra, P. (1959). Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Veenman.

    Google Scholar 

  • Garg, N., & Chandel, S. (2011). Arbuscular mycorrhizal networks: Process and functions. Sustainable Agriculture, 2, 907–930.

    Google Scholar 

  • Gepstein, S., & Glick, B. R. (2013). Strategies to ameliorate abiotic stress-induced plant senescence. Plant Molecular Biology, 82(6), 623–633.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ghotbi-Ravandi, A., Shahbazi, M., Shariati, M., & Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science, 200(6), 403–415.

    CrossRef  CAS  Google Scholar 

  • Glover, D. J. (1984). Contract farming and smallholder outgrower schemes in less-developed countries. World Development, 12(11–12), 1143–1157.

    CrossRef  Google Scholar 

  • Głowacka, K., Kromdijk, J., Kucera, K., Xie, J., Cavanagh, A. P., Leonelli, L., Leakey, A. D., Ort, D. R., Niyogi, K. K., & Long, S. P. (2018). Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop. Nature Communications, 9(1), 1–9.

    CrossRef  CAS  Google Scholar 

  • Godde, D. (2018). Adaptations of the photosynthetic apparatus to stress conditions. In Plant responses to environmental stresses (pp. 449–474). Routledge.

    CrossRef  Google Scholar 

  • Goodland, R. (1995). The concept of environmental sustainability. Annual Review of Ecology and Systematics, 26(1), 1–24.

    CrossRef  Google Scholar 

  • Hagemann, M., & Bauwe, H. (2016). Photorespiration and the potential to improve photosynthesis. Current Opinion in Chemical Biology, 35, 109–116.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hall, A. J., & Richards, R. A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 143, 18–33.

    CrossRef  Google Scholar 

  • Hanson, D. T. (2016). Breaking the rules of Rubisco catalysis. Journal of Experimental Botany, 67(11), 3180.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan, M., Cheng, Y., Kanwar, M. K., Chu, X.-Y., Ahammed, G. J., & Qi, Z.-Y. (2017). Responses of plant proteins to heavy metal stress—A review. Frontiers in Plant Science, 8, 1492.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103, 351–370.

    CrossRef  Google Scholar 

  • Häusler, R. E., Hirsch, H. J., Kreuzaler, F., & Peterhänsel, C. (2002). Overexpression of C4-cycle enzymes in transgenic C3 plants: A biotechnological approach to improve C3-photosynthesis. Journal of Experimental Botany, 53(369), 591–607.

    CrossRef  PubMed  Google Scholar 

  • Henriet, C., Balliau, T., Aimé, D., Le Signor, C., Kreplak, J., Zivy, M., Gallardo, K., & Vernoud, V. (2021). Proteomics of developing pea seeds reveals a complex antioxidant network underlying the response to sulfur deficiency and water stress. Journal of Experimental Botany, 72(7), 2611–2626.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J.-M., Skovmand, B., Taba, S., & Warburton, M. (1999). Plant genetic resources: What can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences, 96(11), 5937–5943.

    CrossRef  CAS  Google Scholar 

  • Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadish, S. K., Way, D. A., & Sharkey, T. D. (2021). Plant heat stress: Concepts directing future research. Plant, Cell & Environment.

    Google Scholar 

  • Jahan, M. S., Guo, S., Sun, J., Shu, S., Wang, Y., Abou El-Yazied, A., Alabdallah, N. M., Hikal, M., Mohamed, M. H., & Ibrahim, M. F. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 167, 309–320.

    CrossRef  CAS  PubMed  Google Scholar 

  • James, D., Borphukan, B., Fartyal, D., Ram, B., Singh, J., Manna, M., Sheri, V., Panditi, V., Yadav, R., & Achary, V. M. M. (2018). Concurrent overexpression of OsGS1; 1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses. Frontiers in Plant Science, 9, 786.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Janssen, P. J., Lambreva, M. D., Plumeré, N., Bartolucci, C., Antonacci, A., Buonasera, K., Frese, R. N., Scognamiglio, V., & Rea, G. (2014). Photosynthesis at the forefront of a sustainable life. Frontiers in Chemistry, 2, 36.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji, K., Wang, Y., Sun, W., Lou, Q., Mei, H., Shen, S., & Chen, H. (2012). Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Journal of Plant Physiology, 169(4), 336–344.

    CrossRef  CAS  PubMed  Google Scholar 

  • Johnson, R., Frey, N., & Moss, D. N. (1974). Effect of water stress on photosynthesis and transpiration of flag leaves and spikes of Barley and wheat 1. Crop Science, 14(5), 728–731.

    CrossRef  Google Scholar 

  • Kant, S., Bi, Y.-M., & Rothstein, S. J. (2011). Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, 62(4), 1499–1509.

    CrossRef  CAS  PubMed  Google Scholar 

  • Khan, I., Awan, S. A., Ikram, R., Rizwan, M., Akhtar, N., Yasmin, H., Sayyed, R. Z., Ali, S., & Ilyas, N. (2020). Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiologia Plantarum.

    Google Scholar 

  • Kimura, H., Hashimoto-Sugimoto, M., Iba, K., Terashima, I., & Yamori, W. (2020). Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. Journal of Experimental Botany, 71(7), 2339–2350.

    CrossRef  CAS  PubMed  Google Scholar 

  • Koester, R. P., Pignon, C. P., Kesler, D. C., Willison, R. S., Kang, M., Shen, Y., Priest, H. D., Begemann, M. B., Cook, K. A., & Bannon, G. A. (2021). Transgenic insertion of the cyanobacterial membrane protein ictB increases grain yield in Zea mays through increased photosynthesis and carbohydrate production. PLoS One, 16(2), e0246359.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler, I. H., Ruiz-Vera, U. M., VanLoocke, A., Thomey, M. L., Clemente, T., Long, S. P., Ort, D. R., & Bernacchi, C. J. (2017). Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. Journal of Experimental Botany, 68(3), 715–726.

    PubMed  Google Scholar 

  • Kumudini, B. S., & Patil, S. V. (2019). Role of plant hormones in improving photosynthesis. Photosynthesis, Productivity and Environmental Stress, 215–240.

    Google Scholar 

  • Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275–294.

    CrossRef  CAS  Google Scholar 

  • Lizana, C., Wentworth, M., Martinez, J. P., Villegas, D., Meneses, R., Murchie, E. H., Pastenes, C., Lercari, B., Vernieri, P., & Horton, P. (2006). Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany, 57(3), 685–697.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179–204.

    CrossRef  Google Scholar 

  • Long, B. M., Rae, B. D., Rolland, V., Förster, B., & Price, G. D. (2016). Cyanobacterial CO2-concentrating mechanism components: Function and prospects for plant metabolic engineering. Current Opinion in Plant Biology, 31, 1–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Long, S. P., Marshall-Colon, A., & Zhu, X.-G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 161(1), 56–66.

    CrossRef  CAS  PubMed  Google Scholar 

  • Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29(3), 315–330.

    CrossRef  CAS  Google Scholar 

  • López-Calcagno, P. E., Fisk, S., Brown, K. L., Bull, S. E., South, P. F., & Raines, C. A. (2019). Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants. Plant Biotechnology Journal, 17(1), 141–151.

    CrossRef  PubMed  CAS  Google Scholar 

  • Majeed A, Muhammad Z (2019). Salinity: A major agricultural problem—Causes, impacts on crop productivity and management strategies. In: Plant abiotic stress tolerance. Springer, pp. 83–99.

    Google Scholar 

  • Makino, A. (2011). Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiology, 155(1), 125–129.

    CrossRef  CAS  PubMed  Google Scholar 

  • Martín-Gómez, P., Aguilera, M., Pemán, J., Gil-Pelegrín, E., & Ferrio, J. P. (2017). Contrasting ecophysiological strategies related to drought: The case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica). Tree Physiology, 37(11), 1478–1492.

    CrossRef  PubMed  CAS  Google Scholar 

  • Massacci, A., Battistelli, A., & Loreto, F. (1996). Effect of drought stress on photosynthetic characteristics, growth and sugar accumulation of field-grown sweet sorghum. Functional Plant Biology, 23(3), 331–340.

    CrossRef  CAS  Google Scholar 

  • Menz, J., Modrzejewski, D., Hartung, F., Wilhelm, R., & Sprink, T. (2020). Genome edited crops touch the market: A view on the global development and regulatory environment. Frontiers in Plant Science, 11.

    Google Scholar 

  • Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.

    CrossRef  CAS  PubMed  Google Scholar 

  • Molina, L. T. (2021). Introductory lecture: Air quality in megacities. Faraday Discussions, 226, 9–52.

    CrossRef  CAS  PubMed  Google Scholar 

  • Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminario, A., Soba, D., Ben Mariem, S., Garriga, M., & Aranjuelo, I. (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9(1), 88.

    CrossRef  CAS  PubMed Central  Google Scholar 

  • Morison, J., Baker, N., Mullineaux, P., & Davies, W. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 639–658.

    CrossRef  CAS  Google Scholar 

  • Morris, M., Edmeades, G., & Pehu, E. (2006). The global need for plant breeding capacity: What roles for the public and private sectors? HortScience, 41(1), 30–39.

    CrossRef  Google Scholar 

  • Muhammad, I., Shalmani, A., Ali, M., Yang, Q.-H., Ahmad, H., & Li, F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, 11, 2310.

    CrossRef  Google Scholar 

  • Murchie, E., Pinto, M., & Horton, P. (2009). Agriculture and the new challenges for photosynthesis research. New Phytologist, 181(3), 532–552.

    CrossRef  CAS  PubMed  Google Scholar 

  • Murchie, E. H., & Niyogi, K. K. (2011). Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155(1), 86–92.

    CrossRef  CAS  PubMed  Google Scholar 

  • Murtaza, B., Murtaza, G., Sabir, M., Amjad, M., & Imran, M. (2016). Nitrogen management in rice-wheat cropping system in salt-affected soils. In Soil science: Agricultural and environmental prospectives (pp. 67–89). Springer.

    CrossRef  Google Scholar 

  • Niinemets, Ü., & Keenan, T. (2014). Photosynthetic responses to stress in Mediterranean evergreens: Mechanisms and models. Environmental and Experimental Botany, 103, 24–41.

    CrossRef  CAS  Google Scholar 

  • Niu, J., Liu, C., Huang, M., Liu, K., & Yan, D. (2020). Effects of foliar fertilization: A review of current status and future perspectives. Journal of Soil Science and Plant Nutrition, 1–15.

    Google Scholar 

  • Nouri, M.-Z., Moumeni, A., & Komatsu, S. (2015). Abiotic stresses: Insight into gene regulation and protein expression in photosynthetic pathways of plants. International Journal of Molecular Sciences, 16(9), 20392–20416.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J., & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2), 96–112.

    CrossRef  Google Scholar 

  • Ortiz, R., Trethowan, R., Ferrara, G. O., Iwanaga, M., Dodds, J. H., Crouch, J. H., Crossa, J., & Braun, H.-J. (2007). High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica, 157(3), 365–384.

    CrossRef  Google Scholar 

  • Otieno, D. O., Schmidt, M., Adiku, S., & Tenhunen, J. (2005). Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. Tree Physiology, 25(3), 361–371.

    CrossRef  CAS  PubMed  Google Scholar 

  • Paleari, L., Movedi, E., Zoli, M., Burato, A., Cecconi, I., Errahouly, J., Pecollo, E., Sorvillo, C., & Confalonieri, R. (2021). Sensitivity analysis using Morris: Just screening or an effective ranking method? Ecological Modelling, 455, 109648.

    CrossRef  Google Scholar 

  • Parry, M. A., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X.-G., Price, G. D., Condon, A. G., & Furbank, R. T. (2011). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 62(2), 453–467.

    CrossRef  CAS  PubMed  Google Scholar 

  • Peng, S., Khush, G. S., Virk, P., Tang, Q., & Zou, Y. (2008). Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108(1), 32–38.

    CrossRef  Google Scholar 

  • Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2021–2035.

    CrossRef  Google Scholar 

  • Prior, H., Baldrick, P., Beken, S., Booler, H., Bower, N., Brooker, P., Brown, P., Burlinson, B., Burns-Naas, L. A., & Casey, W. (2020). Opportunities for use of one species for longer-term toxicology testing during drug development: A cross-industry evaluation. Regulatory Toxicology and Pharmacology, 113, 104624.

    CrossRef  CAS  PubMed  Google Scholar 

  • Raines, C. A. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies. Plant Physiology, 155(1), 36–42.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ramsden, S. J., & Hails, R. S. (2019). Conclusions on agricultural resilience. Agricultural Resilience, 362.

    Google Scholar 

  • Rauf, S. (2008). Breeding sunflower (Helianthus annuus L.) for drought tolerance. Communications in Biometry and Crop Science, 3(1), 29–44.

    Google Scholar 

  • Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One, 8(6), e66428.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., & Foley, J. A. (2012). Recent patterns of crop yield growth and stagnation. Nature Communications, 3(1), 1–7.

    CrossRef  CAS  Google Scholar 

  • Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189–1202.

    CrossRef  CAS  Google Scholar 

  • Reynolds, M., Bonnett, D., Chapman, S. C., Furbank, R. T., Manès, Y., Mather, D. E., & Parry, M. A. (2011). Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 62(2), 439–452.

    CrossRef  CAS  PubMed  Google Scholar 

  • Reynolds, M. P., Quilligan, E., Aggarwal, P. K., Bansal, K. C., Cavalieri, A. J., Chapman, S. C., Chapotin, S. M., Datta, S. K., Duveiller, E., & Gill, K. S. (2016). An integrated approach to maintaining cereal productivity under climate change. Global Food Security, 8, 9–18.

    CrossRef  Google Scholar 

  • Rochaix, J.-D. (2011). Assembly of the photosynthetic apparatus. Plant Physiology, 155(4), 1493–1500.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, L. R., & Kluskens, L. D. (2011). Synthetic biology & bioinformatics: Prospects in the cancer arena. Computational Biology and Applied Bioinformatics, 8, 159–186.

    Google Scholar 

  • Rodríguez, P., Mellisho, C., Conejero, W., Cruz, Z., Ortuno, M., Galindo, A., & Torrecillas, A. (2012). Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environmental and Experimental Botany, 77, 19–24.

    CrossRef  Google Scholar 

  • Saeidi, M., Moradi, F., & Abdoli, M. (2017). Impact of drought stress on yield, photosynthesis rate, and sugar alcohols contents in wheat after anthesis in semiarid region of Iran. Arid Land Research and Management, 31(2), 204–218.

    CrossRef  CAS  Google Scholar 

  • Saglam, A., Kadioglu, A., Demiralay, M., & Terzi, R. (2014). Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Botanica Croatica, 73(2), 315–323.

    CrossRef  CAS  Google Scholar 

  • Schneeberger, K., & Weigel, D. (2011). Fast-forward genetics enabled by new sequencing technologies. Trends in Plant Science, 16(5), 282–288.

    CrossRef  CAS  PubMed  Google Scholar 

  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharwood, R. E. (2017). Engineering chloroplasts to improve Rubisco catalysis: Prospects for translating improvements into food and fiber crops. New Phytologist, 213(2), 494–510.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sharwood, R. E., Ghannoum, O., Kapralov, M. V., Gunn, L. H., & Whitney, S. M. (2016). Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nature Plants, 2(12), 1–9.

    CrossRef  CAS  Google Scholar 

  • Siddique, M., Hamid, A., & Islam, M. (1999). Drought stress effects on photosynthetic rate and leaf gas exchange of wheat. Botanical Bulletin of Academia Sinica, 40.

    Google Scholar 

  • Simkin, A. J., Faralli, M., Ramamoorthy, S., & Lawson, T. (2020). Photosynthesis in non-foliar tissues: Implications for yield. The Plant Journal, 101(4), 1001–1015.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin, A. J., López-Calcagno, P. E., & Raines, C. A. (2019). Feeding the world: Improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany, 70(4), 1119–1140.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Simó, C., Ibáez, C., Valdés, A., Cifuentes, A., & García-Cañas, V. (2014). Metabolomics of genetically modified crops. International Journal of Molecular Sciences, 15(10), 18941–18966.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh, R. P., Prasad, P. V., & Reddy, K. R. (2013). Impacts of changing climate and climate variability on seed production and seed industry. Advances in Agronomy, 118, 49–110.

    CrossRef  Google Scholar 

  • Singh, R. P., Prasad, P. V., Sunita, K., Giri, S., & Reddy, K. R. (2007). Influence of high temperature and breeding for heat tolerance in cotton: A review. Advances in Agronomy, 93, 313–385.

    CrossRef  CAS  Google Scholar 

  • Slafer, G. A., Satorre, E. H., & Andrade, F. H. (2021). Increases in grain yieid in bread wheat from breeding and associated physiological changes. In Genetic improvement of field crops (pp. 1–68). CRC Press.

    CrossRef  Google Scholar 

  • Snyder, R., & Tegeder, M. (2021). Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Frontiers in Plant Science, 11, 2330.

    Google Scholar 

  • Solis, C. A., Yong, M. T., Venkataraman, G., Milham, P., Zhou, M., Shabala, L., Holford, P., Shabala, S., & Chen, Z. H. (2021). Sodium sequestration confers salinity tolerance in an ancestral wild rice. Physiologia Plantarum.

    Google Scholar 

  • Sonnewald, U., Fernie, A. R., Gruissem, W., Schläpfer, P., Anjanappa, R. B., Chang, S. H., Ludewig, F., Rascher, U., Muller, O., & van Doorn, A. M. (2020). The Cassava Source–Sink project: Opportunities and challenges for crop improvement by metabolic engineering. The Plant Journal, 103(5), 1655–1665.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62(6), 817–836.

    CrossRef  CAS  PubMed  Google Scholar 

  • Suzuki, N., Koussevitzky, S., Mittler, R., & Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35(2), 259–270.

    CrossRef  CAS  Google Scholar 

  • Talaat, N. B. (2019). Role of reactive oxygen species signaling in plant growth and development. Reactive oxygen, nitrogen and sulfur species in plants: Production, metabolism, signaling and defense mechanisms (pp. 225–266).

    Google Scholar 

  • Tkemaladze, G. S., & Makhashvili, K. (2016). Climate changes and photosynthesis. Annals of Agrarian Science, 14(2), 119–126.

    CrossRef  Google Scholar 

  • Toledo, Á., & Burlingame, B. (2006). Biodiversity and nutrition: A common path toward global food security and sustainable development. Journal of Food Composition and Analysis, 19(6–7), 477–483.

    CrossRef  Google Scholar 

  • Torabi, S., Taheri, M. A., & Semsarha, F. (2021). Alleviative effects of Faradarmani consciousness field on Triticum aestivum L. under salinity stress. F1000Research, 9(1089), 1089.

    CrossRef  Google Scholar 

  • Tylecote, A. (2019). Biotechnology as a new techno-economic paradigm that will help drive the world economy and mitigate climate change. Research Policy, 48(4), 858–868.

    CrossRef  Google Scholar 

  • Ullah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A., & Datta, A. (2019). Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances in Agronomy, 156, 109–157.

    CrossRef  Google Scholar 

  • Ustin, S. L., & Middleton, E. M. (2021). Current and near-term advances in Earth observation for ecological applications. Ecological Processes, 10(1), 1–57.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Van Esse, H. P., Reuber, T. L., & van der Does, D. (2020). Genetic modification to improve disease resistance in crops. New Phytologist, 225(1), 70–86.

    CrossRef  PubMed  Google Scholar 

  • Wang, Y., Cai, Y., Liu, G., Zhang, P., Li, B., Li, B., Jia, Q., Huang, Y., & Shu, T. (2021). Evaluation of sustainable crop production from an ecological perspective based emergy analysis: A case of China's provinces. Journal of Cleaner Production, 127912.

    Google Scholar 

  • Wani, W., Masoodi, K. Z., Zaid, A., Wani, S. H., Shah, F., Meena, V. S., Wani, S. A., & Mosa, K. A. (2018). Engineering plants for heavy metal stress tolerance. Rendiconti Lincei Scienze Fisiche e Naturali, 29(3), 709–723.

    CrossRef  Google Scholar 

  • Warburton, M. L., Rauf, S., Marek, L., Hussain, M., Ogunola, O., & de Jesus Sanchez Gonzalez, J. (2017). The use of crop wild relatives in maize and sunflower breeding. Crop Science, 57(3), 1227–1240.

    CrossRef  CAS  Google Scholar 

  • Wassmann, R., Jagadish, S., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R., Howell, G., Pathak, H., & Sumfleth, K. (2009). Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, 101, 59–122.

    CrossRef  Google Scholar 

  • Weber, A. P., & Bar-Even, A. (2019). Update: Improving the efficiency of photosynthetic carbon reactions. Plant Physiology, 179(3), 803–812.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney, S. M., Houtz, R. L., & Alonso, H. (2011). Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiology, 155(1), 27–35.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wise TA (2013) Can we feed the world in 2050. A scoping paper to assess the evidence Global Development and Environment Institute Working Paper (13–04).

    Google Scholar 

  • Wittmann, G. (1981). Toxic metals. In Metal pollution in the aquatic environment (pp. 3–70). Springer.

    CrossRef  Google Scholar 

  • Yadav R, Thankappan R, Kumar A (2021) Novel approaches for genome editing to develop climate smart crops. In Microbiomes and the global climate change. Springer, pp. 267–291.

    Google Scholar 

  • Yang, J., & Zhang, J. (2010). Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 61(12), 3177–3189.

    CrossRef  CAS  PubMed  Google Scholar 

  • Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., & Yan, J. (2020). Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Molecular Plant, 13(2), 187–214.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zlatev, Z., & Lidon, F. C. (2012). An overview on drought induced changes in plant growth, water relationsand photosynthesis. Emirates Journal of Food and Agriculture, 57–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicong Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naz, M., Raza, M.A., Tariq, M., Qi, S., Dai, Z., Du, D. (2022). Enhancing Photosynthetic Efficiency of Crop Through Metabolic Engineering. In: Aftab, T., Hakeem, K.R. (eds) Metabolic Engineering in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7262-0_3

Download citation