Abstract
Several current findings have shown that enhancing the photosynthetic process through genetic engineering could provide a technique to boost crop yield. Photosynthesis is the primary predictor of crop output and crop efficacy in capturing light, and converting it into biomass during the growing season, which is the main indicator of yield attributes, whether its biomass or grain. Boosting crop photosynthetic performance by metabolic changes in a changing environment is another area where information is lacking. In the present chapter, we would discuss present and prospective ways for boosting photosynthetic efficiency under different climate conditions, as well as their implications on photosynthesis activity. Our objective is to analyze the existing projects being made to better photosynthesis effectiveness. This paper investigates the impact of modifying the Calvin-Benson (CB) cycle, photorespiration, and electron transport on biomass and seeds yield. It highlights some surprise findings where harmful impacts were seen. In the preceding part, we discussed future possibilities such as integrating polygenic modulation of photosynthetic carbon absorption to boost yield potential and features that address yield variability.
Keywords
- Photosynthetic efficiency
- Metabolic pathways
- Enzymes
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abdelhamid, A., Elshinnawy, M., Farrag, F., Abidi, S., Adom, K., Liu, R., Agrahar-Murugkar, D., Pal, P., Agte, V., & Tarwadi, K. (2005). Bibliography from web of science March 2005, Golden rice and (pro)-vitamin A. Bioresource Technology, 60(1), 91–93.
Ahmad, N., & Mukhtar, Z. (2017). Genetic manipulations in crops: Challenges and opportunities. Genomics, 109(5–6), 494–505.
Ahuja, I., de Vos, R. C., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15(12), 664–674.
Allen, L. H., Jr., Kakani, V. G., Vu, J. C., & Boote, K. J. (2011). Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 168(16), 1909–1918.
Andrews, M., Lea, P. J., Raven, J., & Lindsey, K. (2004). Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Annals of Applied Biology, 145(1), 25–40.
Araus, J., Slafer, G., Reynolds, M., & Royo, C. (2002). Plant breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 89(7), 925–940.
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77.
Atia, A., Barhoumi, Z., Debez, A., Hkiri, S., Abdelly, C., Smaoui, A., Haouari, C. C., & Gouia, H. (2018). Plant hormones: Potent targets for engineering salinity tolerance in plants. In Salinity responses and tolerance in plants (Vol. 1, pp. 159–184). Springer.
Barber, J. (2009). Photosynthetic energy conversion: Natural and artificial. Chemical Society Reviews, 38(1), 185–196.
Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S., & Mills, P. (2012). Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biological Reviews, 87(1), 52–71.
Bevan, M. W., Uauy, C., Wulff, B. B., Zhou, J., Krasileva, K., & Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543(7645), 346–354.
Bhandari, H., Bhanu, A., Srivastava, K., Singh, M., & Shreya, H. A. (2017). Assessment of genetic diversity in crop plants – An overview. Advances in Plants & Agriculture Research, 7(3), 00255.
Bhattacharjee, S., & Saha, A. K. (2014). Plant water-stress response mechanisms. In Approaches to plant stress and their management (pp. 149–172). Springer.
Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.
Blankenship, R. E., Tiede, D. M., Barber, J., Brudvig, G. W., Fleming, G., Ghirardi, M., Gunner, M., Junge, W., Kramer, D. M., & Melis, A. (2011). Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332(6031), 805–809.
Borrill, P., Harrington, S. A., & Uauy, C. (2019). Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. The Plant Journal, 97(1), 56–72.
Bradshaw, J. E. (2017). Plant breeding: Past, present and future. Euphytica, 213(3), 60.
Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., & Pink, D. (2003). The molecular analysis of leaf senescence – A genomics approach. Plant Biotechnology Journal, 1(1), 3–22.
Cammarano, D., Rötter, R. P., Asseng, S., Ewert, F., Wallach, D., Martre, P., Hatfield, J. L., Jones, J. W., Rosenzweig, C., & Ruane, A. C. (2016). Uncertainty of wheat water use: simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 198, 80–92.
Carter, T. E., Jr., Nelson, R. L., Sneller, C. H., & Cui, Z. (2004). Genetic diversity in soybean. Soybeans: Improvement, production, and uses, 16, 303–416.
Cavender-Bares, J. (2019). Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist, 221(2), 669–692.
Chaudhry, S., & Sidhu, G. P. S. (2021). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 1–31.
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560.
Chiffoleau, Y., & Desclaux, D. (2006). Participatory plant breeding: The best way to breed for sustainable agriculture? International Journal of Agricultural Sustainability, 4(2), 119–130.
Chmielowska-Bąk, J., & Deckert, J. (2021). Plant recovery after metal stress—A review. Plants, 10(3), 450.
Dahal, K., Li, X.-Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario – A current overview. Frontiers in Plant Science, 10, 563.
DaMatta, F. B. M., Avila, R. T., Cardoso, A. A., Martins, S. C., & Ramalho, J. C. (2018). Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A review. Journal of Agricultural and Food Chemistry, 66(21), 5264–5274.
Dann, M., & Leister, D. (2017). Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730), 20160380.
De Souza, A. P., Massenburg, L. N., Jaiswal, D., Cheng, S., Shekar, R., & Long, S. P. (2017). Rooting for cassava: Insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytologist, 213(1), 50–65.
Dhillon, R., & von Wuehlisch, G. (2013). Mitigation of global warming through renewable biomass. Biomass and Bioenergy, 48, 75–89.
Egilla, J., Davies, F., & Boutton, T. (2005). Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica, 43(1), 135–140.
El-Sharkawy, M. A. (2004). Cassava biology and physiology. Plant Molecular Biology, 56(4), 481–501.
Ennahli, S., & Earl, H. J. (2005). Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45(6), 2374–2382.
Erb, T. J., & Zarzycki, J. (2016). Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation. Current Opinion in Chemical Biology, 34, 72–79.
Evans, L., & Fischer, R. (1999). Yield potential: Its definition, measurement, and significance. Crop Science, 39(6), 1544–1551.
Fageria, N. K., & Baligar, V. (2005). Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy, 88, 97–185.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 153–188.
Fathi, A., & Tari, D. B. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1–6.
Fischer, R., Byerlee, D. R., & Edmeades, G. O. (2009) Can technology deliver on the yield challenge to 2050?
Gaastra, P. (1959). Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Veenman.
Garg, N., & Chandel, S. (2011). Arbuscular mycorrhizal networks: Process and functions. Sustainable Agriculture, 2, 907–930.
Gepstein, S., & Glick, B. R. (2013). Strategies to ameliorate abiotic stress-induced plant senescence. Plant Molecular Biology, 82(6), 623–633.
Ghotbi-Ravandi, A., Shahbazi, M., Shariati, M., & Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science, 200(6), 403–415.
Glover, D. J. (1984). Contract farming and smallholder outgrower schemes in less-developed countries. World Development, 12(11–12), 1143–1157.
Głowacka, K., Kromdijk, J., Kucera, K., Xie, J., Cavanagh, A. P., Leonelli, L., Leakey, A. D., Ort, D. R., Niyogi, K. K., & Long, S. P. (2018). Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop. Nature Communications, 9(1), 1–9.
Godde, D. (2018). Adaptations of the photosynthetic apparatus to stress conditions. In Plant responses to environmental stresses (pp. 449–474). Routledge.
Goodland, R. (1995). The concept of environmental sustainability. Annual Review of Ecology and Systematics, 26(1), 1–24.
Hagemann, M., & Bauwe, H. (2016). Photorespiration and the potential to improve photosynthesis. Current Opinion in Chemical Biology, 35, 109–116.
Hall, A. J., & Richards, R. A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 143, 18–33.
Hanson, D. T. (2016). Breaking the rules of Rubisco catalysis. Journal of Experimental Botany, 67(11), 3180.
Hasan, M., Cheng, Y., Kanwar, M. K., Chu, X.-Y., Ahammed, G. J., & Qi, Z.-Y. (2017). Responses of plant proteins to heavy metal stress—A review. Frontiers in Plant Science, 8, 1492.
Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.
Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103, 351–370.
Häusler, R. E., Hirsch, H. J., Kreuzaler, F., & Peterhänsel, C. (2002). Overexpression of C4-cycle enzymes in transgenic C3 plants: A biotechnological approach to improve C3-photosynthesis. Journal of Experimental Botany, 53(369), 591–607.
Henriet, C., Balliau, T., Aimé, D., Le Signor, C., Kreplak, J., Zivy, M., Gallardo, K., & Vernoud, V. (2021). Proteomics of developing pea seeds reveals a complex antioxidant network underlying the response to sulfur deficiency and water stress. Journal of Experimental Botany, 72(7), 2611–2626.
Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J.-M., Skovmand, B., Taba, S., & Warburton, M. (1999). Plant genetic resources: What can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences, 96(11), 5937–5943.
Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.
Jagadish, S. K., Way, D. A., & Sharkey, T. D. (2021). Plant heat stress: Concepts directing future research. Plant, Cell & Environment.
Jahan, M. S., Guo, S., Sun, J., Shu, S., Wang, Y., Abou El-Yazied, A., Alabdallah, N. M., Hikal, M., Mohamed, M. H., & Ibrahim, M. F. (2021). Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 167, 309–320.
James, D., Borphukan, B., Fartyal, D., Ram, B., Singh, J., Manna, M., Sheri, V., Panditi, V., Yadav, R., & Achary, V. M. M. (2018). Concurrent overexpression of OsGS1; 1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses. Frontiers in Plant Science, 9, 786.
Janssen, P. J., Lambreva, M. D., Plumeré, N., Bartolucci, C., Antonacci, A., Buonasera, K., Frese, R. N., Scognamiglio, V., & Rea, G. (2014). Photosynthesis at the forefront of a sustainable life. Frontiers in Chemistry, 2, 36.
Ji, K., Wang, Y., Sun, W., Lou, Q., Mei, H., Shen, S., & Chen, H. (2012). Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Journal of Plant Physiology, 169(4), 336–344.
Johnson, R., Frey, N., & Moss, D. N. (1974). Effect of water stress on photosynthesis and transpiration of flag leaves and spikes of Barley and wheat 1. Crop Science, 14(5), 728–731.
Kant, S., Bi, Y.-M., & Rothstein, S. J. (2011). Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, 62(4), 1499–1509.
Khan, I., Awan, S. A., Ikram, R., Rizwan, M., Akhtar, N., Yasmin, H., Sayyed, R. Z., Ali, S., & Ilyas, N. (2020). Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiologia Plantarum.
Kimura, H., Hashimoto-Sugimoto, M., Iba, K., Terashima, I., & Yamori, W. (2020). Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. Journal of Experimental Botany, 71(7), 2339–2350.
Koester, R. P., Pignon, C. P., Kesler, D. C., Willison, R. S., Kang, M., Shen, Y., Priest, H. D., Begemann, M. B., Cook, K. A., & Bannon, G. A. (2021). Transgenic insertion of the cyanobacterial membrane protein ictB increases grain yield in Zea mays through increased photosynthesis and carbohydrate production. PLoS One, 16(2), e0246359.
Köhler, I. H., Ruiz-Vera, U. M., VanLoocke, A., Thomey, M. L., Clemente, T., Long, S. P., Ort, D. R., & Bernacchi, C. J. (2017). Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. Journal of Experimental Botany, 68(3), 715–726.
Kumudini, B. S., & Patil, S. V. (2019). Role of plant hormones in improving photosynthesis. Photosynthesis, Productivity and Environmental Stress, 215–240.
Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275–294.
Lizana, C., Wentworth, M., Martinez, J. P., Villegas, D., Meneses, R., Murchie, E. H., Pastenes, C., Lercari, B., Vernieri, P., & Horton, P. (2006). Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany, 57(3), 685–697.
Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179–204.
Long, B. M., Rae, B. D., Rolland, V., Förster, B., & Price, G. D. (2016). Cyanobacterial CO2-concentrating mechanism components: Function and prospects for plant metabolic engineering. Current Opinion in Plant Biology, 31, 1–8.
Long, S. P., Marshall-Colon, A., & Zhu, X.-G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 161(1), 56–66.
Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29(3), 315–330.
López-Calcagno, P. E., Fisk, S., Brown, K. L., Bull, S. E., South, P. F., & Raines, C. A. (2019). Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants. Plant Biotechnology Journal, 17(1), 141–151.
Majeed A, Muhammad Z (2019). Salinity: A major agricultural problem—Causes, impacts on crop productivity and management strategies. In: Plant abiotic stress tolerance. Springer, pp. 83–99.
Makino, A. (2011). Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiology, 155(1), 125–129.
Martín-Gómez, P., Aguilera, M., Pemán, J., Gil-Pelegrín, E., & Ferrio, J. P. (2017). Contrasting ecophysiological strategies related to drought: The case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica). Tree Physiology, 37(11), 1478–1492.
Massacci, A., Battistelli, A., & Loreto, F. (1996). Effect of drought stress on photosynthetic characteristics, growth and sugar accumulation of field-grown sweet sorghum. Functional Plant Biology, 23(3), 331–340.
Menz, J., Modrzejewski, D., Hartung, F., Wilhelm, R., & Sprink, T. (2020). Genome edited crops touch the market: A view on the global development and regulatory environment. Frontiers in Plant Science, 11.
Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.
Molina, L. T. (2021). Introductory lecture: Air quality in megacities. Faraday Discussions, 226, 9–52.
Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminario, A., Soba, D., Ben Mariem, S., Garriga, M., & Aranjuelo, I. (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9(1), 88.
Morison, J., Baker, N., Mullineaux, P., & Davies, W. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 639–658.
Morris, M., Edmeades, G., & Pehu, E. (2006). The global need for plant breeding capacity: What roles for the public and private sectors? HortScience, 41(1), 30–39.
Muhammad, I., Shalmani, A., Ali, M., Yang, Q.-H., Ahmad, H., & Li, F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, 11, 2310.
Murchie, E., Pinto, M., & Horton, P. (2009). Agriculture and the new challenges for photosynthesis research. New Phytologist, 181(3), 532–552.
Murchie, E. H., & Niyogi, K. K. (2011). Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155(1), 86–92.
Murtaza, B., Murtaza, G., Sabir, M., Amjad, M., & Imran, M. (2016). Nitrogen management in rice-wheat cropping system in salt-affected soils. In Soil science: Agricultural and environmental prospectives (pp. 67–89). Springer.
Niinemets, Ü., & Keenan, T. (2014). Photosynthetic responses to stress in Mediterranean evergreens: Mechanisms and models. Environmental and Experimental Botany, 103, 24–41.
Niu, J., Liu, C., Huang, M., Liu, K., & Yan, D. (2020). Effects of foliar fertilization: A review of current status and future perspectives. Journal of Soil Science and Plant Nutrition, 1–15.
Nouri, M.-Z., Moumeni, A., & Komatsu, S. (2015). Abiotic stresses: Insight into gene regulation and protein expression in photosynthetic pathways of plants. International Journal of Molecular Sciences, 16(9), 20392–20416.
Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J., & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2), 96–112.
Ortiz, R., Trethowan, R., Ferrara, G. O., Iwanaga, M., Dodds, J. H., Crouch, J. H., Crossa, J., & Braun, H.-J. (2007). High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica, 157(3), 365–384.
Otieno, D. O., Schmidt, M., Adiku, S., & Tenhunen, J. (2005). Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. Tree Physiology, 25(3), 361–371.
Paleari, L., Movedi, E., Zoli, M., Burato, A., Cecconi, I., Errahouly, J., Pecollo, E., Sorvillo, C., & Confalonieri, R. (2021). Sensitivity analysis using Morris: Just screening or an effective ranking method? Ecological Modelling, 455, 109648.
Parry, M. A., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X.-G., Price, G. D., Condon, A. G., & Furbank, R. T. (2011). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 62(2), 453–467.
Peng, S., Khush, G. S., Virk, P., Tang, Q., & Zou, Y. (2008). Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108(1), 32–38.
Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2021–2035.
Prior, H., Baldrick, P., Beken, S., Booler, H., Bower, N., Brooker, P., Brown, P., Burlinson, B., Burns-Naas, L. A., & Casey, W. (2020). Opportunities for use of one species for longer-term toxicology testing during drug development: A cross-industry evaluation. Regulatory Toxicology and Pharmacology, 113, 104624.
Raines, C. A. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies. Plant Physiology, 155(1), 36–42.
Ramsden, S. J., & Hails, R. S. (2019). Conclusions on agricultural resilience. Agricultural Resilience, 362.
Rauf, S. (2008). Breeding sunflower (Helianthus annuus L.) for drought tolerance. Communications in Biometry and Crop Science, 3(1), 29–44.
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One, 8(6), e66428.
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., & Foley, J. A. (2012). Recent patterns of crop yield growth and stagnation. Nature Communications, 3(1), 1–7.
Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189–1202.
Reynolds, M., Bonnett, D., Chapman, S. C., Furbank, R. T., Manès, Y., Mather, D. E., & Parry, M. A. (2011). Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 62(2), 439–452.
Reynolds, M. P., Quilligan, E., Aggarwal, P. K., Bansal, K. C., Cavalieri, A. J., Chapman, S. C., Chapotin, S. M., Datta, S. K., Duveiller, E., & Gill, K. S. (2016). An integrated approach to maintaining cereal productivity under climate change. Global Food Security, 8, 9–18.
Rochaix, J.-D. (2011). Assembly of the photosynthetic apparatus. Plant Physiology, 155(4), 1493–1500.
Rodrigues, L. R., & Kluskens, L. D. (2011). Synthetic biology & bioinformatics: Prospects in the cancer arena. Computational Biology and Applied Bioinformatics, 8, 159–186.
Rodríguez, P., Mellisho, C., Conejero, W., Cruz, Z., Ortuno, M., Galindo, A., & Torrecillas, A. (2012). Plant water relations of leaves of pomegranate trees under different irrigation conditions. Environmental and Experimental Botany, 77, 19–24.
Saeidi, M., Moradi, F., & Abdoli, M. (2017). Impact of drought stress on yield, photosynthesis rate, and sugar alcohols contents in wheat after anthesis in semiarid region of Iran. Arid Land Research and Management, 31(2), 204–218.
Saglam, A., Kadioglu, A., Demiralay, M., & Terzi, R. (2014). Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Botanica Croatica, 73(2), 315–323.
Schneeberger, K., & Weigel, D. (2011). Fast-forward genetics enabled by new sequencing technologies. Trends in Plant Science, 16(5), 282–288.
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
Sharwood, R. E. (2017). Engineering chloroplasts to improve Rubisco catalysis: Prospects for translating improvements into food and fiber crops. New Phytologist, 213(2), 494–510.
Sharwood, R. E., Ghannoum, O., Kapralov, M. V., Gunn, L. H., & Whitney, S. M. (2016). Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nature Plants, 2(12), 1–9.
Siddique, M., Hamid, A., & Islam, M. (1999). Drought stress effects on photosynthetic rate and leaf gas exchange of wheat. Botanical Bulletin of Academia Sinica, 40.
Simkin, A. J., Faralli, M., Ramamoorthy, S., & Lawson, T. (2020). Photosynthesis in non-foliar tissues: Implications for yield. The Plant Journal, 101(4), 1001–1015.
Simkin, A. J., López-Calcagno, P. E., & Raines, C. A. (2019). Feeding the world: Improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany, 70(4), 1119–1140.
Simó, C., Ibáez, C., Valdés, A., Cifuentes, A., & García-Cañas, V. (2014). Metabolomics of genetically modified crops. International Journal of Molecular Sciences, 15(10), 18941–18966.
Singh, R. P., Prasad, P. V., & Reddy, K. R. (2013). Impacts of changing climate and climate variability on seed production and seed industry. Advances in Agronomy, 118, 49–110.
Singh, R. P., Prasad, P. V., Sunita, K., Giri, S., & Reddy, K. R. (2007). Influence of high temperature and breeding for heat tolerance in cotton: A review. Advances in Agronomy, 93, 313–385.
Slafer, G. A., Satorre, E. H., & Andrade, F. H. (2021). Increases in grain yieid in bread wheat from breeding and associated physiological changes. In Genetic improvement of field crops (pp. 1–68). CRC Press.
Snyder, R., & Tegeder, M. (2021). Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Frontiers in Plant Science, 11, 2330.
Solis, C. A., Yong, M. T., Venkataraman, G., Milham, P., Zhou, M., Shabala, L., Holford, P., Shabala, S., & Chen, Z. H. (2021). Sodium sequestration confers salinity tolerance in an ancestral wild rice. Physiologia Plantarum.
Sonnewald, U., Fernie, A. R., Gruissem, W., Schläpfer, P., Anjanappa, R. B., Chang, S. H., Ludewig, F., Rascher, U., Muller, O., & van Doorn, A. M. (2020). The Cassava Source–Sink project: Opportunities and challenges for crop improvement by metabolic engineering. The Plant Journal, 103(5), 1655–1665.
Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62(6), 817–836.
Suzuki, N., Koussevitzky, S., Mittler, R., & Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35(2), 259–270.
Talaat, N. B. (2019). Role of reactive oxygen species signaling in plant growth and development. Reactive oxygen, nitrogen and sulfur species in plants: Production, metabolism, signaling and defense mechanisms (pp. 225–266).
Tkemaladze, G. S., & Makhashvili, K. (2016). Climate changes and photosynthesis. Annals of Agrarian Science, 14(2), 119–126.
Toledo, Á., & Burlingame, B. (2006). Biodiversity and nutrition: A common path toward global food security and sustainable development. Journal of Food Composition and Analysis, 19(6–7), 477–483.
Torabi, S., Taheri, M. A., & Semsarha, F. (2021). Alleviative effects of Faradarmani consciousness field on Triticum aestivum L. under salinity stress. F1000Research, 9(1089), 1089.
Tylecote, A. (2019). Biotechnology as a new techno-economic paradigm that will help drive the world economy and mitigate climate change. Research Policy, 48(4), 858–868.
Ullah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A., & Datta, A. (2019). Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances in Agronomy, 156, 109–157.
Ustin, S. L., & Middleton, E. M. (2021). Current and near-term advances in Earth observation for ecological applications. Ecological Processes, 10(1), 1–57.
Van Esse, H. P., Reuber, T. L., & van der Does, D. (2020). Genetic modification to improve disease resistance in crops. New Phytologist, 225(1), 70–86.
Wang, Y., Cai, Y., Liu, G., Zhang, P., Li, B., Li, B., Jia, Q., Huang, Y., & Shu, T. (2021). Evaluation of sustainable crop production from an ecological perspective based emergy analysis: A case of China's provinces. Journal of Cleaner Production, 127912.
Wani, W., Masoodi, K. Z., Zaid, A., Wani, S. H., Shah, F., Meena, V. S., Wani, S. A., & Mosa, K. A. (2018). Engineering plants for heavy metal stress tolerance. Rendiconti Lincei Scienze Fisiche e Naturali, 29(3), 709–723.
Warburton, M. L., Rauf, S., Marek, L., Hussain, M., Ogunola, O., & de Jesus Sanchez Gonzalez, J. (2017). The use of crop wild relatives in maize and sunflower breeding. Crop Science, 57(3), 1227–1240.
Wassmann, R., Jagadish, S., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R., Howell, G., Pathak, H., & Sumfleth, K. (2009). Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, 101, 59–122.
Weber, A. P., & Bar-Even, A. (2019). Update: Improving the efficiency of photosynthetic carbon reactions. Plant Physiology, 179(3), 803–812.
Whitney, S. M., Houtz, R. L., & Alonso, H. (2011). Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiology, 155(1), 27–35.
Wise TA (2013) Can we feed the world in 2050. A scoping paper to assess the evidence Global Development and Environment Institute Working Paper (13–04).
Wittmann, G. (1981). Toxic metals. In Metal pollution in the aquatic environment (pp. 3–70). Springer.
Yadav R, Thankappan R, Kumar A (2021) Novel approaches for genome editing to develop climate smart crops. In Microbiomes and the global climate change. Springer, pp. 267–291.
Yang, J., & Zhang, J. (2010). Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 61(12), 3177–3189.
Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., & Yan, J. (2020). Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Molecular Plant, 13(2), 187–214.
Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261.
Zlatev, Z., & Lidon, F. C. (2012). An overview on drought induced changes in plant growth, water relationsand photosynthesis. Emirates Journal of Food and Agriculture, 57–72.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Naz, M., Raza, M.A., Tariq, M., Qi, S., Dai, Z., Du, D. (2022). Enhancing Photosynthetic Efficiency of Crop Through Metabolic Engineering. In: Aftab, T., Hakeem, K.R. (eds) Metabolic Engineering in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7262-0_3
Download citation
DOI: https://doi.org/10.1007/978-981-16-7262-0_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-7261-3
Online ISBN: 978-981-16-7262-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)