Skip to main content

Applications of Ionic Liquids in Pharmaceutical Sciences

  • Chapter
  • First Online:
Functional Biomaterials

Abstract

Ionic liquids are composed only of ions and have melting points by operational definition ≤100 ° C. Their physicochemical properties, for example, viscosity and miscibility with other solvents and mechanisms of interactions with active pharmaceutical ingredients (APIs), can be “fine-tuned” by changing the molecular structures of their anions and cations; this flexibility is not operative for molecular solvents. This led to many pharmaceutical applications including their use as solvents, cosolvents, and colloids in the synthesis and formulations of APIs for drug delivery, for example, by topical and transdermal routes. We also discuss the use of bioinspired ILs to mitigate their possible toxicity. An important development is to convert the (solid) API into a liquid using single active (IL-API) and double active (API-API) strategies. This often increases drug solubility in water and eliminates the adverse effects of polymorphism on drug availability. The multitude of potential applications and efforts to enhance the safety of the formulations will certainly lead to increased approvals by the drug regulatory agencies and hence commercialization of new, more effective drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

API:

Active pharmaceutical ingredient

API-IL:

The liquid salt form of an active pharmaceutical ingredient

CAGE:

Choline geranate

Docusate:

1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate

GILBSs:

Ionic liquid gemini surfactants

H-bonding:

Hydrogen-bonding

ILBS:

Ionic liquid-based surfactant

MW:

Microwave heating

O/W:

Oil-in-water (emulsion or microemulsion)

PILBS:

Polymerized ionic liquid-based surfactant

R1MeImX:

1-(n-alkyl)-3-methylimidazolium ILs where X = halide, carboxylate, etc. The alkyl groups are methyl, ethyl, propyl, butyl, hexyl, and octyl are referred to as Me, Et, Pr, Bu, Hx, Oc, respectively.

RM:

Reverse micelle

W/O:

Water-in-oil (emulsion or microemulsion)

μE:

Microemulsion

References

  • Abednejad A, Ghaee A, Morais ES et al (2019) Polyvinylidene fluoride–hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior. Acta Biomater 100:142–157

    Article  CAS  PubMed  Google Scholar 

  • Agatemor C, Ibsen KN, Tanner EEL et al (2018) Ionic liquids for addressing unmet needs in healthcare. Bioeng Transl Med 3:7–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  CAS  PubMed  Google Scholar 

  • Allesø M, Rantanen J, Aaltonen J, Cornett C, van den Berg F (2008) Solvent subset selection for polymorph screening. J Chemometr 22:621–631

    Article  Google Scholar 

  • Almeida TS, Júlio A, Mota JP et al (2017a) An emerging integration between ionic liquids and nanotechnology: general uses and future prospects in drug delivery. Ther Deliv 8(6):461–473

    Article  PubMed  Google Scholar 

  • Almeida TS, Júlio A, Saraiva N et al (2017b) Choline-versus imidazole-based ionic liquids as functional ingredients in topical delivery systems: cytotoxicity, solubility, and skin permeation studies. Drug Dev Ind Pharm 43(11):1858–1865

    Article  Google Scholar 

  • Alves M, Vieira NSM, Rebelo LPN et al (2017) Fluorinated ionic liquids for protein drug delivery systems: investigating their impact on the structure and function of lysozyme. Int J Pharm 526(1–2):309–320

    Article  CAS  PubMed  Google Scholar 

  • Amaral M, Pereiro AB, Gaspar MM et al (2021) Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine 16(1):63–80

    Article  CAS  PubMed  Google Scholar 

  • Amidon GL, Lennernas H, Shah VP et al (2014) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. AAPS J 16:894–898

    PubMed  PubMed Central  Google Scholar 

  • An JH, Kim WS (2013) Antisolvent crystallization using ionic liquids as solvent and antisolvent for polymorphic design of active pharmaceutical ingredient. Crystal Growth Design 13:31–39. https://doi.org/10.1021/cg300730w

    Article  CAS  Google Scholar 

  • Anusha A, Chattopadhyay S, Jha D (2018) Zinc oxide nanoparticles dispersed in ionic liquids show high antimicrobial efficacy to skin-specific bacteria. ACS Appl Mater Interfaces 10(18):15401–15411

    Article  Google Scholar 

  • Anvari S, Hajfarajollah H, Mokhtarani B et al (2016) Antibacterial and anti-adhesive properties of ionic liquids with various cationic and anionic heads toward pathogenic bacteria. J Mol Liq 221:685–690. https://doi.org/10.1016/j.molliq.2016.05.093

    Article  CAS  Google Scholar 

  • Araújo JMM, Florindo C, Pereiro AB et al (2014) Cholinium-based ionic liquids with pharmaceutically active anions. RSC Adv 4:28126–28132. https://doi.org/10.1039/c3ra47615d

    Article  CAS  Google Scholar 

  • Banerjee A, Ibsen K, Iwao Y et al (2017) Transdermal protein delivery using choline and geranate (CAGE) deep eutectic solvent. Adv Healthc Mater 6:1601411

    Article  Google Scholar 

  • Barreiro EJ, Fraga CAM (2015) Química medicinal: as bases moleculares da ação dos fármacos. Artmed, Porto Alegre

    Google Scholar 

  • Bashir F, Muhammad N, Khan NH et al (2021) Ionic liquids as a green solvents for drugs or as an active pharmaceutical ingredient. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, Amsterdam, pp 193–209

    Chapter  Google Scholar 

  • Benedetto A, Bodo E, Gontrani L et al (2014) Amino acid anions in organic ionic compounds. An ab initio study of selected ion pairs. J Phys Chem B 118:2471–2486

    Article  CAS  PubMed  Google Scholar 

  • Bseiso EA, Nasr M, Sammour O et al (2015) Recent advances in topical formulation carriers of antifungal agents. Ind J Dermatol Venereol Leprol 81:457–463

    Article  Google Scholar 

  • Bubalo MC, Radošević K, Redovniković IR et al (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12

    Article  PubMed  Google Scholar 

  • Carafa M, Marianecci C, Rinaldi F et al (2009) Span® and tween® neutral and pH-sensitive vesicles: characterization and in vitro skin permeation. J Liposome Res 19:332–340

    Article  CAS  PubMed  Google Scholar 

  • Carson L, Chau PKW, Earle MJ et al (2009) Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem 11:492–449. https://doi.org/10.1039/b821842k

    Article  CAS  Google Scholar 

  • Catalán J (2000) Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J Phys Chem B 113:5951–5960. https://doi.org/10.1021/jp8095727

    Article  CAS  Google Scholar 

  • Censi R, Di Martino P (2015) Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 20:18759–18776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla G, Bansal A (2004) Challenges in polymorphism of pharmaceuticals. Crips 5:9–12

    Google Scholar 

  • Chinembiri TN, Gerber M, du Plessis L et al (2015) Topical delivery of 5-fluorouracil from Pheroid™ formulations and the in vitro efficacy against human melanoma. AAPS Pharm Sci Tech 16:1390–1399

    Article  CAS  Google Scholar 

  • Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18:275–297

    Article  CAS  Google Scholar 

  • Cho CW, Stolte S, Yun YS (2016) Comprehensive approach for predicting toxicological effects of ionic liquids on several biological systems using unified descriptors. Sci Rep 6:1–9. https://doi.org/10.1038/srep33403

    Article  CAS  Google Scholar 

  • Chopra H, Kumar P, Singh I (2019) Ionic liquid-based transdermal delivery of propranolol: a patent evaluation of US2018/0169033A1. Pharm Pat Anal 8:203–209

    Article  PubMed  Google Scholar 

  • Chowdhury MR, Moshikur RM, Wakabayashi R et al (2018) Ionic-liquid-based paclitaxel preparation: a new potential formulation for cancer treatment. Mol Pharm 15(6):2484–2488

    Article  CAS  PubMed  Google Scholar 

  • Chung MC, Silva ATA, Castro LF et al (2005) Latenciação e formas avançadas de transporte de fármacos. Rev Bras Cienc Farm 41:155–179

    Article  CAS  Google Scholar 

  • Clas SD, Sanchez RI, Nofsinger R (2014) Chemistry-enabled drug delivery (prodrugs): recent progress and challenges. Drug Discov Today 19:79–87

    Article  CAS  PubMed  Google Scholar 

  • Cojocaru OA, Bica K, Gurau G et al (2013) Prodrug ionic liquids: functionalizing neutral active ionic liquid form. Med Chem Commun 4:559–563

    Article  CAS  Google Scholar 

  • Cook K, Tarnawsky K, Swinton AJ et al (2019) Correlating lipid membrane permeabilities of imidazolium ionic liquids with their cytotoxicities on yeast, bacterial, and mammalian cells. Biomol Ther 9(6):251

    CAS  Google Scholar 

  • De Faria ELP, Shabudin S, Claúdio AFM et al (2017) Aqueous solutions of surface-active ionic liquids: remarkable alternative solvents to improve the solubility of Triterpenic acids and their extraction from biomass. ACS Sustain Chem Eng 5:7344–7351. https://doi.org/10.1021/acssuschemeng.7b01616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Hoz A, Díaz-Ortiz A, Moreno A (2008) Selectivity under the action of microwave irradiation. In: Loupy A (ed) Microwaves in organic synthesis: second edition, 2nd edn. Wiley, London, pp 219–277

    Google Scholar 

  • Dias AP, Santos SS, Silva JV et al (2020) Dendrimers in the context of nanomedicine. Int J Pharm 573:118814

    Article  CAS  PubMed  Google Scholar 

  • Dias AR, Costa-Rodrigues J, Teixeira C et al (2019) Ionic liquids for topical delivery in cancer. Curr Med Chem 26:7520–7532

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos AD, Morais ARC, Melo C et al (2013) Solubility of pharmaceutical compounds in ionic liquids. Fluid Phase Equilib 356:18–29. https://doi.org/10.1016/j.fluid.2013.07.020

    Article  CAS  Google Scholar 

  • Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189

    Article  CAS  PubMed  Google Scholar 

  • El Seoud OA, Bioni TA, Dignani MT (2021) Understanding cellulose dissolution in ionic liquid-dimethyl sulfoxide binary mixtures: quantification of the relative importance of hydrogen bonding and hydrophobic interactions. J Mol Liq 322:5. https://doi.org/10.1016/j.molliq.2020.114848

    Article  CAS  Google Scholar 

  • El Seoud OA, Koschella A, Fidale LC et al (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647

    Article  PubMed  Google Scholar 

  • Esson MM, Mecozzi S (2020) Preparation, characterization, and formulation optimization of ionic-liquid-in-water nanoemulsions toward systemic delivery of amphotericin B. Mol Pharm 17(6):2221–2226

    Article  CAS  PubMed  Google Scholar 

  • Evans KO (2008) Supported phospholipid membrane interactions with 1-butyl-3-methylimidazolium chloride. J Phys Chem B 112:8558–8562

    Article  CAS  PubMed  Google Scholar 

  • Ferraz R, Branco LC, Prudêncio C et al (2011) Ionic liquids as active pharmaceutical ingredients. ChemMedChem 6(6):975–985

    Article  CAS  PubMed  Google Scholar 

  • Freire MG, Neves CMSS, Marrucho IM et al (2010) Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J Phys Chem A 114:3744–3749. https://doi.org/10.1021/jp903292n

    Article  CAS  PubMed  Google Scholar 

  • Goindi S, Arora P, Kumar N, Puri A (2014) Development of novel ionic liquid-based microemulsion formulation for dermal delivery of 5-fluorouracil. AAPS Pharm Sci Tech 15:810–821. https://doi.org/10.1208/s12249-014-0103-1

    Article  CAS  Google Scholar 

  • Goindi S, Kaur R, Kaur R (2015) An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: development, ex-vivo and in-vivo evaluation. Int J Pharm 495:913–923

    Article  CAS  PubMed  Google Scholar 

  • Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  PubMed  Google Scholar 

  • Hare JI, Lammers T, Ashford MB et al (2017) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38

    Article  CAS  PubMed  Google Scholar 

  • Hauss DJ (2007) Oral lipid-based formulations. Adv Drug Deliv Rev 59:667–676

    Article  CAS  PubMed  Google Scholar 

  • He Z, Alexandridis P (2017) Ionic liquid and nanoparticle hybrid systems: emerging applications. Adv Colloid Interface Sci 244:54–70

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann J, Nüchter M, Ondruschka B, Wasserscheid P (2003) Ionic liquids and their heating behaviour during microwave irradiation - a state of the art report and challenge to assessment. Green Chem 5:296–299. https://doi.org/10.1039/b212533a

    Article  CAS  Google Scholar 

  • Hough WL, Rogers RD (2007) Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jpn 80:2262–2269

    Article  CAS  Google Scholar 

  • Hough WL, Smiglak M, Rodríguez H et al (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436

    Article  CAS  Google Scholar 

  • Huang H, Gurau G, Shamshina J et al (2014) Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation. Chem Sci (Camb) 5:3449–3456

    Article  Google Scholar 

  • Huang W, Wu X, Qi J et al (2020) Ionic liquids: green and tailor-made solvents in drug delivery. Drug Discov Today 25:901–908

    Article  CAS  PubMed  Google Scholar 

  • Islam R, Chowdhury R, Wakabayashi R et al (2020) Ionic liquid-in-oil microemulsions prepared with biocompatible choline carboxylic acids for improving the transdermal delivery of a sparingly soluble drug. Pharmaceutics 12:392

    Article  CAS  PubMed Central  Google Scholar 

  • Jesus AR, Soromenho MRC, Raposo LR et al (2019) Enhancement of water solubility of poorly water-soluble drugs by new biocompatible N-acetyl amino acid N-alkyl cholinium-based ionic liquids. Eur J Pharm Biopharm 137:227–232

    Article  CAS  PubMed  Google Scholar 

  • Jing B, Lan N, Qiu J et al (2016) Interaction of ionic liquids with lipid bilayer: a biophysical study of ionic liquid cytotoxicity. J Phys Chem B 120:2781–2789

    Article  CAS  PubMed  Google Scholar 

  • Kapare HS, Metkar SR (2020) Micellar drug delivery system: a review. Pharmaceutical. Resonance 2:5

    Google Scholar 

  • Karpinski PH (2006) Polymorphism of active pharmaceutical ingredients. Chem Eng Technol 29:233–237. https://doi.org/10.1002/ceat.200500397

    Article  CAS  Google Scholar 

  • Katharina B, Peter G (2008) Applications of chiral ionic liquids. Eur. J Org Chem 5:3235–3250

    Google Scholar 

  • Kawai K, Kaneko K, Kawakami H et al (2011) Bioinspired choline-like ionic liquids: their penetration ability through cell membranes and application to SEM visualization of hydrous samples. Langmuir 27:9671–9675

    Article  CAS  PubMed  Google Scholar 

  • Klier L, Bresser T, Nigst TA et al (2012) Lewis acid triggered selective zincation of chromones, quinolones, and thiochromones: application to the preparation of natural flavones and isoflavones. J Am Chem Soc 134:13584–13587

    Article  CAS  PubMed  Google Scholar 

  • Krossing I, Slattery JM, Daguenet C et al (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128:13427–13434. https://doi.org/10.1021/ja0619612

    Article  CAS  PubMed  Google Scholar 

  • Lim GS, Jaenicke S, Klahn M (2015) How the spontaneous insertion of amphiphilic imidazolium-based cations changes biological membranes: a molecular simulation study. Phys Chem Chem Phys 17:29171–29183

    Article  CAS  PubMed  Google Scholar 

  • Löbenberg R, Amidon GL (2000) Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm 50:3–12

    Article  PubMed  Google Scholar 

  • Ma C, Laaksonen A, Liu C et al (2018) The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev 47:8685–8720. https://doi.org/10.1039/c8cs00325d

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie JC (1969) Ordered structure of the stratum corneum of mammalian skin. Nature 222:881–882

    Article  CAS  PubMed  Google Scholar 

  • Magina S, Barros-Timmons A, Ventura SPM et al (2021) Evaluating the hazardous impact of ionic liquids – challenges and opportunities. J Hazard Mater 412:125215

    Article  CAS  PubMed  Google Scholar 

  • Maneewattanapinyo P, Yeesamun A, Watthana F et al (2019) Controlled release of lidocaine–diclofenac ionic liquid drug from freeze-thawed gelatin/poly(vinyl alcohol) transdermal patches. AAPS PharmSciTech 20:322

    Article  PubMed  Google Scholar 

  • Marrucho IM, Branco LC, Rebelo LPN (2014) Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng 5:527–546

    Article  CAS  PubMed  Google Scholar 

  • Martins CT, Sato BM, El Seoud OA (2008) First study on the thermo-solvatochromism in aqueous 1-(1-butyl)-3- methylimidazolium tetrafluoroborate: a comparison between the solvation by an ionic liquid and by aqueous alcohols. J Phys Chem B 112:8330–8339. https://doi.org/10.1021/jp8017474

    Article  CAS  PubMed  Google Scholar 

  • Mashak A, Ghaee A, Ravari F (2016) Effect of poly(N-vinypyrolidone) on the non-isothermal crytalization kinetics and viscoelastic properties of PVDF films. Braz J Chem Eng 33:945–956

    Article  CAS  Google Scholar 

  • Mirmehrabi M, Rohani S (2005) An approach to solvent screening for crystallization of polymorphic pharmaceutical and fine chemicals. J Pharm Sci 94:1560–1576

    Article  CAS  PubMed  Google Scholar 

  • Miwa Y, Hamamoto H, Ishida T (2016) Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Eur J Pharm Biopharm 102:92–100. https://doi.org/10.1016/j.ejpb.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  • Mizuuchi H, Jaitely V, Murdan S, Florence AT (2008) Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents. Eur J Pharm Sci 33:326–331. https://doi.org/10.1016/j.ejps.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  • Mondal D, Kalar PJ, Kori S et al (2020) Recent developments on synthesis of indole derivatives through green approaches and their pharmaceutical applications. Curr Org Chem 24:2665–2693

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Tahara Y, Tamura M et al (2010b) Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem Commun (Camb) 46:1452–1454

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Tamura M, Tahara Y et al (2010a) Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation. Int J Pharm 400:243–250

    Article  CAS  PubMed  Google Scholar 

  • Monti D, Egiziano E, Burgalassi S et al (2017) Ionic liquids as potential enhancers for transdermal drug delivery. Int J Pharm 516:45–51

    Article  CAS  PubMed  Google Scholar 

  • Nancharaiah YV, Reddy GKK, Lalithamanasa P, Venugopalan VP (2012) The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling 28:1141–1149. https://doi.org/10.1080/08927014.2012.736966

    Article  CAS  Google Scholar 

  • Nor SBM, Woi PM, Ng SH (2017) Characterization of ionic liquids nanoemulsion loaded with piroxicam for drug delivery system. J Mol Liq 234:30–39

    Article  Google Scholar 

  • Omar M (2016) A review of ionic liquids for advance in drug delivery: theory and pharmaceutical implementation. UKJPB 4(1):41–44

    CAS  Google Scholar 

  • Onori G, Santucci A (2007) Effect of 1-alcohols on micelle formation and hydrophobic interactions. Trend Colloid Interf Sci 160:297–301. https://doi.org/10.1007/bfb0116334

    Article  Google Scholar 

  • Orrling KM, Wu X, Russo F, Larhed M (2008) Fast, acid-free, and selective lactamization of lactones in ionic liquids. J Org Chem 73:8627–8630. https://doi.org/10.1021/jo8015264

    Article  CAS  PubMed  Google Scholar 

  • Pedro SN, Freire CSR, Silvestre AJD et al (2020) The role of ionic liquids in the pharmaceutical field: an overview of relevant applications. Int J Mol Sci 21:8298

    Article  CAS  PubMed Central  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qamar S, Brown P, Ferguson S et al (2016) The interaction of a model active pharmaceutical with cationic surfactant and the subsequent design of drug based ionic liquid surfactants. J Colloid Interface Sci 481:117–124. https://doi.org/10.1016/j.jcis.2016.07.054

    Article  CAS  PubMed  Google Scholar 

  • Rautio J, Kumpulainen H, Heimbach T et al (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270

    Article  CAS  PubMed  Google Scholar 

  • Rautio J, Meanwell NA, Di L et al (2018) The expanding role of prodrugs recent progress and challenges. Drug Discov Today 19:79–87

    Google Scholar 

  • Raza K, Kumar P, Ratan S et al (2014) Polymorphism: the phenomenon affecting the performance of drugs. SOJ Pharm Pharmaceut Sci. https://doi.org/10.15226/2374-6866/1/2/00111

  • Reslan M, Kayser V (2018) Ionic liquids as biocompatible stabilizers of proteins. Biophys Rev 10(3):781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Hornedo N, Murphy D (1999) Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci 88:651–660

    Article  PubMed  Google Scholar 

  • Seidlits SK, Drinnan CT, Petersen RR et al (2011) Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater 7:2401–2409

    Article  CAS  PubMed  Google Scholar 

  • Shamshina JL, Barber PS, Rogers RD (2013) Ionic liquids in drug delivery. Expert Opin Drug Deliv 10(10):1367–1381

    Article  CAS  PubMed  Google Scholar 

  • Shamshina JL, Kelley SP, Gurau G et al (2015) Chemistry: develop ionic liquid drugs. Nature 528(7581):188–189

    Article  CAS  PubMed  Google Scholar 

  • Shamshina JL, Rogers RD (2014) Overcoming the problems of solid state drug formulations with ionic liquids. Ther Deliv 5:489–491

    Article  CAS  PubMed  Google Scholar 

  • Shamshina JL, Rogers RD (2020) Are myths and preconceptions preventing us from applying ionic liquid forms of antiviral medicines to the current health crisis? Int J Mol Sci 21:1–16. https://doi.org/10.3390/ijms21176002

    Article  CAS  Google Scholar 

  • Sheldon R. (2011) Catalytic reactions in ionic liquids Chem Commun 2399–2407

    Google Scholar 

  • Sidat Z, Marimuthu T, Kumar P et al (2019) Ionic liquids as potential and synergistic permeation enhancers for transdermal drug delivery. Pharmaceutics 11:96

    Article  CAS  PubMed Central  Google Scholar 

  • Siddiqui IR, Srivastava A, Shamim S et al (2016) An efficient one-pot Regioselective approach towards the synthesis of Thiopyrano [2,3-d]thiazole-2-thiones catalyzed by basic ionic liquid under microwave irradiation. J Heterocyclic Chem 53:849–858. https://doi.org/10.1002/jhet.2314

    Article  CAS  Google Scholar 

  • Silva AT, Lobo L, Oliveira IS et al (2020) Building on surface-active ionic liquids for the rescuing of the antimalarial drug chloroquine. Int J Mol Sci 21(15):1–9

    Article  Google Scholar 

  • Silva ATA, Chung MC, Castro LF, Guido RVC et al (2005) Advances in prodrug design. Mini-Rev Med Chem 5:893–914

    Article  PubMed  Google Scholar 

  • Singh DM, Mital N, Kaur G (2016) Topical drug delivery systems: a patent review. Expert Opin Ther Pat 26:213–228

    Article  Google Scholar 

  • Sintra TE, Shimizu K, Ventura SPM et al (2018) Enhanced dissolution of ibuprofen using ionic liquids as catanionic hydrotropes. Phys Chem Chem Phys 20(3):2094–2103

    Article  CAS  PubMed  Google Scholar 

  • Smith KB, Bridson RH, Leeke GA (2011) Solubilities of pharmaceutical compounds in ionic liquids. J Chem Eng Data 56:2039–2043. https://doi.org/10.1021/je101040p

    Article  CAS  Google Scholar 

  • Song YL, Wu F, Zhang CC et al (2015) Ionic liquid catalyzed synthesis of 2-(indole-3-yl)-thiochroman-4-ones and their novel antifungal activities. Bioorg Med Chem Lett 25:259–261

    Article  CAS  PubMed  Google Scholar 

  • Spange S, Lungwitz R, Schade A (2014) Correlation of molecular structure and polarity of ionic liquids. J Mol Liq 192:137–143. https://doi.org/10.1016/j.molliq.2013.06.016

    Article  CAS  Google Scholar 

  • Stella VJ, Nti-Addae KW (2007) Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev 59:677–694

    Article  CAS  PubMed  Google Scholar 

  • Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3- methylimidazolium hexafluorophosphate. Green Chem 5:361–363. https://doi.org/10.1039/b304400a

    Article  CAS  Google Scholar 

  • Takagi T, Ramachandran C, Bermejo M et al (2006) A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain and Japan. Mol Pharm 3:31–643

    Article  Google Scholar 

  • Tang J, Song H, Feng X et al (2019) Ionic liquid-like pharmaceutical ingredients and applications of ionic liquids in medicinal chemistry: development, status and prospects. Curr Med Chem 26:5947–5967

    Article  CAS  PubMed  Google Scholar 

  • Tanner EEL, Curreri AM, Balkaran JPR et al (2019) Design principles of ionic liquids for transdermal drug delivery. Adv Mater 31:1901103

    Article  Google Scholar 

  • Tanner EEL, Ibsen KN, Mitragotri S (2018) Transdermal insulin delivery using choline-based ionic liquids (CAGE). J Control Release 286:137–144

    Article  CAS  PubMed  Google Scholar 

  • Teixeira S, Santos MM, Ferraz M et al (2019) A novel approach for bisphosphonates: ionic liquids and organic salts from zoledronic acid. ChemMedChem 14(20):1767–1770

    Article  CAS  PubMed  Google Scholar 

  • Testa B, Crivori P, Reist M et al (2000) The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples. Perspect Drug Discov 19(1):179–211

    Article  CAS  Google Scholar 

  • Torin JH, Sivaloganathan S, Kohandel M et al (2011) Drug delivery through the skin: molecular simulations of barrier lipids to design more effective noninvasive dermal and transdermal delivery systems for small molecules, biologics, and cosmetics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:449–462

    Article  Google Scholar 

  • Ueno K, Watanabe M (2011) From colloidal stability in ionic liquids to advanced soft materials using unique media. Langmuir 27(15):9105–9115

    Article  CAS  PubMed  Google Scholar 

  • Vaidya A, Mitragotri S (2020) Ionic liquid-mediated delivery of insulin to buccal mucosa. J Control Release 327:26–34

    Article  CAS  PubMed  Google Scholar 

  • Varade D, Bahadur P (2004) Effect of hydrotropes on the aqueous solution behavior of surfactants. J Surf Deter 7:257–261

    Article  CAS  Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211

    Article  CAS  Google Scholar 

  • Wang C, Chopade SA, Guo Y et al (2018) Preparation, characterization, and formulation development of drug-drug protic ionic liquids of diphenhydramine with ibuprofen and naproxen. Mol Pharm 15(9):4190–4201

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Richter C, Rühling A et al (2015) A remarkably simple class of imidazolium-based lipids and their biological properties. Chemistry 21:15123–15126

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Vlasova A, Velasquez DE et al (2016) Skin vaccination against rotavirus using microneedles: proof of concept in gnotobiotic piglets. PLoS One 11:e0166038

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Zhang H, He S et al (2020) Improving dermal delivery of hyaluronic acid by ionic liquids for attenuating skin dehydration. Int J Biol Macromol 150:528–535

    Article  CAS  PubMed  Google Scholar 

  • Xue Z (2019) Hydrolysis of ionic liquids. In: Zhang S (ed) Encyclopedia of ionic liquids. Springer, Singapore, pp 1–5

    Google Scholar 

  • Yang DD, Paterna NJ, Senetra AS et al (2021) Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy. iScience 24:101853. https://doi.org/10.1016/j.isci.2020.101853

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Zu C, Li W et al (2020) Enhanced water solubility and oral bioavailability of paclitaxel crystal powders through an innovative antisolvent precipitation process: antisolvent crystallization using ionic liquids as solvent. Pharmaceutics 12(11):1–16

    Article  Google Scholar 

  • Zakrewsky M, Lovejoy KS, Kern TL et al (2014) Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci U S A 111:13313–13318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Wang HJ, Cui XM et al (2016) Evaluations of imidazolium ionic liquids as novel skin permeation enhancers for drug transdermal delivery. Pharm Dev Technol 22:511–520

    Article  PubMed  Google Scholar 

  • Zhang Y, Cao Y, Meng X et al (2020) Enhancement of transdermal delivery of artemisinin using microemulsion vehicle based on ionic liquid and lidocaine ibuprofen. Colloids Surf B Biointerfaces 189:110886. https://doi.org/10.1016/j.colsurfb.2020.110886

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Holmes SS, Baker GA et al (2012) Ionic derivatives of betulinic acid as novel HIV-1 protease inhibitors. J Enzyme Inhib Med Chem 27:715–721. https://doi.org/10.3109/14756366.2011.611134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

O. A El Seoud and N. Keppeler thank Fapesp for financial support (grant 2014/22136-4) and CNPq for research fellowships (grants 306108/2019-4 and 141853/2019-0, respectively).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, S.S., Keppeler, N., Giarolla, J., Ferreira, E.I., El Seoud, O.A. (2022). Applications of Ionic Liquids in Pharmaceutical Sciences. In: Jana, S., Jana, S. (eds) Functional Biomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7152-4_17

Download citation

Publish with us

Policies and ethics