Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 203 Accesses

Abstract

Light-induced electron and/or energy transfer are essential reactions for solar energy conversion, which is an urgent priority to achieve a sustainable society. In addition to the physicochemical research, synthetic chemistry for synthesizing various series of multifarious photofunctional compounds is contributable for understanding and controlling those processes. Hetero-multinuclear metal complexes should be one of the most interesting photofunctional compounds because they often show useful photophysical properties, photochemical behaviors, and photocatalytic abilities due to the efficient intramolecular excitation energy and/or electron transfer and the flexibility in the molecular design. This chapter overviews the backgrounds and analysis of the problems in the conventional synthetic methods for integrating different types of photofunctional metal complexes to form hetero-multinuclear complexes, and then explores new strategies for novel classes of multinuclear complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amadelli R, Argazzi R, Bignozzi CA, Scandola F (1990) Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22-. J Am Chem Soc 112:7099

    Google Scholar 

  2. Hwang I-W, Ko DM, Ahn TK, Yoon ZS, Kim D, Peng X, Aratani N, Osuka A (2005) Excitation energy migration in a dodecameric porphyrin wheel. J Phys Chem B 109:8643

    Google Scholar 

  3. Kaveevivitchai N, Chitta R, Zong R, El Ojaimi M, Thummel RP (2012) A molecular light-driven water oxidation catalyst. J Am Chem Soc 134:10721

    Google Scholar 

  4. Li F, Jiang Y, Zhang B, Huang F, Gao Y, Sun L (2012) Towards a solar fuel device: light-driven water oxidation catalyzed by a supramolecular assembly. Angew Chem Int Ed 51:2417

    Google Scholar 

  5. Ozawa H, Sakai K (2011) Photo-hydrogen-evolving molecular devices driving visible-light-induced water reduction into molecular hydrogen: structure-activity relationship and reaction mechanism. Chem Commun 47:2227

    Google Scholar 

  6. Arachchige SM, Brown JR, Chang E, Jain A, Zigler DF, Rangan K, Brewer KJ (2009) Design considerations for a system for photocatalytic hydrogen production from water employing mixed-metal photochemical molecular devices for photoinitiated electron collection. Inorg Chem 48:1899

    Google Scholar 

  7. Stoll T, Gennari M, Fortage J, Castillo CE, Rebarz M, Sliwa M, Poizat O, Odobel F, Deronzier A, Collomb M-N (2014) An efficient RuII–RhIII–RuII polypyridyl photocatalyst for visible-light-driven hydrogen production in aqueous solution. Angew Chem Int Ed 53:1654

    Google Scholar 

  8. Koike K, Naito S, Sato S, Tamaki Y, Ishitani O (2009 ) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction III: effects of length of alkyl chain connecting photosensitizer to catalyst. J Photochem Photobiol A 207:109

    Google Scholar 

  9. Schneider J, Vuong KQ, Calladine JA, Sun X-Z, Whitwood AC, George MW, Perutz RN (2011) Photochemistry and photophysics of a Pd(II) metalloporphyrin: Re(I) tricarbonyl bipyridine molecular dyad and its activity toward the photoreduction of CO2 to CO. Inorg Chem 50:118777

    Google Scholar 

  10. Tamaki Y, Watanabe K, Koike K, Inoue H, Morimoto T, Ishitani O (2012) Development of highly efficient supramolecular CO2 reduction photocatalysts with high turnover frequency and durability. Faraday Discuss 155:115

    Google Scholar 

  11. Tamaki Y, Koike K, Morimoto T, Ishitani O (2013) Substantial improvement in the efficiency and durability of a photocatalyst for carbon dioxide reduction using a benzoimidazole derivative as an electron donor. J Catal 304:22

    Google Scholar 

  12. Gholamkhass B, Mametsuka H, Koike K, Tanabe T, Furue M, Ishitani O (2005) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: Ruthenium-rhenium bi- and tetranuclear complexes. Inorg Chem 44:2326

    Google Scholar 

  13. Kato E, Takeda H, Koike K, Ohkubo K, Ishitani O (2015) Ru(II)–Re(I) binuclear photocatalysts connected by –CH2XCH2– (X = O, S, CH2) for CO2 reduction. Chem Sci 6:3003

    Google Scholar 

  14. Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Designing dendrimers based on transition-metal complexes. Light-harvesting properties and predetermined redox patterns. Acc Chem Res 31:26

    Google Scholar 

  15. Tamaki Y, Morimoto T, Koike K, Ishitani O (2012) Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc Natl Acad Sci U S A 109:15673

    Google Scholar 

  16. Tamaki Y, Koike K, Morimoto T, Yamazaki Y, Ishitani O (2013) Red-light-driven photocatalytic reduction of CO2 using Os(II)–Re(I) supramolecular complexes. Inorg Chem 52:11902

    Google Scholar 

  17. Sato S, Koike K, Inoue H, Ishitani O (2007) Highly efficient supramolecular photocatalysts for CO2 reduction using visible light. Photochem Photobiol Sci 6:454

    Google Scholar 

  18. Kou Y, Nakatani S, Sunagawa G, Tachikawa Y, Masui D, Shimada T, Takagi S, Tryk DA, Nabetani Y, Tachibana H, Inoue H (2014) Visible light-induced reduction of carbon dioxide sensitized by a porphyrin–rhenium dyad metal complex on p-type semiconducting NiO as the reduction terminal end of an artificial photosynthetic system. J Catal 310:57

    Google Scholar 

  19. Bian Z-Y, Wang H, Fu W-F, Li L, Ding A-Z (2012) Two bifunctional RuII/ReI photocatalysts for CO2 reduction: a spectroscopic, photocatalytic, and computational study. Polyhedron 32:78

    Google Scholar 

  20. Kitagawa Y, Ogasawara S, Kosumi D, Hashimoto H, Tamiaki H (2015) Photophysical properties of chlorophyll derivatives linked with rhenium bipyridine complexes. Bull Chem Soc Jpn 88:346

    Google Scholar 

  21. Kitagawa Y, Takeda H, Ohashi K, Asatani T, Kosumi D, Hashimoto H, Ishitani O, Tamiaki H (2014) Photochemical reduction of CO2 with red light using synthetic chlorophyll-rhenium bipyridine dyad. Chem Lett 43:1383

    Google Scholar 

  22. Nakada A, Koike K, Nakashima T, Morimoto T, Ishitani O (2015) Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution. Inorg Chem 54:1800

    Google Scholar 

  23. Morimoto T, Nishiura C, Tanaka M, Rohacova J, Nakagawa Y, Funada Y, Koike K, Yamamoto Y, Shishido S, Kojima T, Saeki T, Ozeki T, Ishitani O (2013) Ring-shaped Re(I) multinuclear complexes with unique photofunctional properties. J Am Chem Soc 135:13266

    Google Scholar 

  24. Rohacova J, Sekine A, Kawano T, Tamari S, Ishitani O (2015) Trinuclear and tetranuclear Re(I) rings connected with phenylene, vinylene, and ethynylene chains: synthesis, photophysics, and redox properties. Inorg Chem 54:8769

    Google Scholar 

  25. Asatani T, Nakagawa Y, Funada Y, Sawa S, Takeda H, Morimoto T, Koike K, Ishitani O (2014) Ring-shaped rhenium(I) multinuclear complexes: improved synthesis and photoinduced multielectron accumulation. Inorg Chem 53:7170

    Google Scholar 

  26. Connors PJ, Tzalis D, Dunnick AL, Tor Y (1998) Coordination compounds as building blocks:  single-step synthesis of heteronuclear multimetallic complexes containing RuII and OsII. Inorg Chem 37:1121

    Google Scholar 

  27. Tzalis D, Tor Y (1996) Coordination compounds as building blocks: single-step synthesis of multi-ruthenium(II) complexes. Chem. Commun 1043

    Google Scholar 

  28. Goeb S, De Nicola A, Ziessel R (2005) Controlled synthesis of multinuclear metal complex arrays by cross coupling of coordinated ligands. J Org Chem 70:6802

    Google Scholar 

  29. Arm KJ, Williams JAG (2006) A cross-coupling strategy for the synthesis of dimetallic assemblies containing mixed bipyridine-terpyridine bridging ligands: luminescence and energy transfer properties. Dalton Trans 2172

    Google Scholar 

  30. Whittle VL, Williams JAG (2009) Cyclometallated, bis-terdentate iridium complexes as linearly expandable cores for the construction of multimetallic assemblies. Dalton Trans 3929

    Google Scholar 

  31. Welter S, Salluce N, Belser P, Groeneveld M, De Cola L (2005) Photoinduced electronic energy transfer in modular, conjugated, dinuclear Ru(II)/Os(II) complexes. Coord Chem Rev 249:1360

    Google Scholar 

  32. Cassidy L, Horn S, Cleary L, Halpin Y, Browne WR, Vos JG (2009) Synthesis of asymmetric supramolecular compounds using a Ni(0) catalysed homo-coupling approach. Dalton Trans 3923

    Google Scholar 

  33. Bian Z-Y, Chi S-M, Li L, Fu W (2010) Conjugation effect of the bridging ligand on the CO2 reduction properties in difunctional photocatalysts. Dalton Trans 39:7884

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuomi Yamazaki .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamazaki, Y. (2022). General Introduction. In: Development of Synthetic Methods for Novel Photofunctional Multinuclear Complexes . Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-7148-7_1

Download citation

Publish with us

Policies and ethics