Skip to main content

Measurement of Skeletal Muscle Pennation Angle

  • Chapter
  • First Online:
Sonomyography

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 400 Accesses

Abstract

Pennation angle (PA) is an important indicator for skeletal muscle activity, and automatic calculation of PA has high practical value in fields such as sports medicine and rehabilitation engineering. This chapter mainly introduces the automatic calculation methods used in PA measurement, especially focusing on those related to Hough transform and Radon transform, and their derivative versions designed to be more robust and accurate as well. Today, on different datasets, these methods have generally demonstrated calculation accuracy of PA measurement comparable to traditional manual methods, but are faster and more objective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zatsiorsky, V.M., Prilutsky, B.I.: Biomechanics of skeletal muscles. Biomechanics of Skeletal Muscles (2012)

    Google Scholar 

  2. Fukunaga, T., Ichinose, Y., Ito, M., Kawakami, Y.S., Fukashiro, S.: Determination of fascicle length and pennation in a contracting human muscle in vivo. J. Appl. Physiol. 82(1), 354 (1997)

    Article  Google Scholar 

  3. Narici, M.: Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. J. Electromyogr. Kinesiol. 9(2), 97–103 (1999)

    Article  Google Scholar 

  4. Caresio, C., Salvi, M., Molinari, F., Meiburger, K.M., Minetto, M.A.: Fully automated muscle ultrasound analysis (MUSA): robust and accurate muscle thickness measurement. Ultrasound Med. Biol. 43(1), 195–205 (2017)

    Article  Google Scholar 

  5. Chen, X., Li, Q., Qi, S., Zhang, H., Chen, S., Wang, T.: Continuous fascicle orientation measurement of medial gastrocnemius muscle in ultrasonography using frequency domain Radon transform. Biomed. Sig. Process. Control 20, 117–124 (2015)

    Article  Google Scholar 

  6. Fladby, S.: Automatic feature extraction and parameter estimation from unipennate muscles in B-mode ultrasound images (2017)

    Google Scholar 

  7. Maganaris, C.N., Baltzopoulos, V., Sargeant, A.J.: Repeated contractions alter the geometry of human skeletal muscle. J. Appl. Physiol. 93(6), 2089–2094 (2002)

    Article  Google Scholar 

  8. Wickiewicz, T.L., Roy, R.R., Powell, P.L., Edgerton, V.R.: Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 179, 275–283 (1983)

    Article  Google Scholar 

  9. Friederich, J.A., Brand, R.A.: Muscle fiber architecture in the human lower limb. J. Biomech. 23(1), 91–95 (1990)

    Article  Google Scholar 

  10. Sacks, R.D., Roy, R.R.: Architecture of the hind limb muscles of cats: functional significance. J. Morphol. 173(2), 185–195 (1982)

    Article  Google Scholar 

  11. Gans, C.: The functional significance of muscle architecture: a theoretical analysis. Adv. Anat. Embryol. Cell Biol. 38, 115–142 (1965)

    Google Scholar 

  12. Zhou, G.-Q., Zheng, Y.-P.: Automatic fascicle length estimation on muscle ultrasound images with an orientation-sensitive segmentation. IEEE Trans. Biomed. Eng. 62(12), 2828–2836 (2015)

    Article  Google Scholar 

  13. Zhou, G.-Q., et al.: Automatic myotendinous junction tracking in ultrasound images with phase-based segmentation. BioMed Res. Int. 2018 (2018)

    Google Scholar 

  14. Rekabizaheh, M., Rezasoltani, A., Lahouti, B., Namavarian, N.: Pennation angle and fascicle length of human skeletal muscles to predict the strength of an individual muscle using real-time ultrasonography: a review of literature. J. Clin. Physiotherapy Res. 1(2), 42–48 (2016)

    Google Scholar 

  15. Hough, P.V.: Method and means for recognizing complex patterns. ed: Google Patents (1962)

    Google Scholar 

  16. Immerkær, J.: Some remarks on the straight line Hough transform. Pattern Recogn. Lett. 19(12), 1133–1135 (1998)

    Article  ADS  Google Scholar 

  17. Hart, P.E., Duda, R.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  18. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  ADS  Google Scholar 

  19. Princen, J., Illingworth, J., Kittler, J.: A hierarchical approach to line extraction based on the Hough transform. Comput. Vis. Graph. Image Process. 52(1), 57–77 (1990)

    Article  Google Scholar 

  20. Song, J., Lyu, M.R.: A Hough transform based line recognition method utilizing both parameter space and image space. Pattern Recogn. 38(4), 539–552 (2005)

    Article  ADS  Google Scholar 

  21. Zhou, Y., Zheng, Y.-P.: Estimation of muscle fiber orientation in ultrasound images using revoting hough transform (RVHT). Ultrasound Med. Biol. 34(9), 1474–1481 (2008)

    Article  Google Scholar 

  22. Kiryati, N., Bruckstein, A.M.: Antialiasing the Hough transform. CVGIP Graph. Models Image Process. 53(3), 213–222 (1991)

    Google Scholar 

  23. Reeves, N.D., Narici, M.V., Maganaris, C.N.: In vivo human muscle structure and function: adaptations to resistance training in old age. Exp. Physiol. 89(6), 675–689 (2004)

    Article  Google Scholar 

  24. Trouvé, E., Mauris, G., Rudant, J.-P., Tonyé, E.: Detection of linear features in synthetic-aperture radar images by use of the localized Radon transform and prior information. Appl. Opt. 43(2), 264–273 (2004)

    Article  ADS  Google Scholar 

  25. Copeland, A.C., Ravichandran, G., Trivedi, M.M.: Localized Radon transform-based detection of ship wakes in SAR images. IEEE Trans. Geosci. Remote Sens. 33(1), 35–45 (1995)

    Article  ADS  Google Scholar 

  26. Jin, Y., Wang, S.: An algorithm for ship wake detection from the synthetic aperture radar images using the Radon transform and morphological image processing. Imaging Sci. J. 48(4), 159–163 (2000)

    Article  Google Scholar 

  27. Murphy, L.M.: Linear feature detection and enhancement in noisy images via the Radon transform. Pattern Recogn. Lett. 4(4), 279–284 (1986)

    Article  ADS  Google Scholar 

  28. Zhou, Y., Li, J.-Z., Zhou, G., Zheng, Y.-P.: Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging. Biomed. Eng. Online 11(1), 1–10 (2012)

    Article  Google Scholar 

  29. Radon, J.: On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 5(4), 170–176 (1986)

    Article  Google Scholar 

  30. Aggarwal, N., Karl, W.C.: Line detection in images through regularized Hough transform. IEEE Trans. Image Process. 15(3), 582–591 (2006)

    Article  ADS  Google Scholar 

  31. Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992)

    Article  Google Scholar 

  32. Rehorn, M.R., Blemker, S.S.: The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J. Biomech. 43(13), 2574–2581 (2010)

    Article  Google Scholar 

  33. Kararizou, E., Manta, P., Kalfakis, N., Vassilopoulos, D.: Age-related morphometric characteristics of human skeletal muscle in male subjects. Pol. J. Pathol. 60(4), 186–188 (2009)

    Google Scholar 

  34. Zhao, H., Zhang, L.-Q.: Automatic tracking of muscle fascicles in ultrasound images using localized radon transform. IEEE Trans. Biomed. Eng. 58(7), 2094–2101 (2011)

    Article  ADS  Google Scholar 

  35. Zhao, H., Ren, Y., Wu, Y.-N., Liu, S.Q., Zhang, L.-Q.: Ultrasonic evaluations of Achilles tendon mechanical properties poststroke. J. Appl. Physiol. 106(3), 843–849 (2009)

    Article  Google Scholar 

  36. Rana, M., Hamarneh, G., Wakeling, J.M.: Automated tracking of muscle fascicle orientation in B-mode ultrasound images. J. Biomech. 42(13), 2068–2073 (2009)

    Article  Google Scholar 

  37. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137. Springer (1998)

    Google Scholar 

  38. Jafari-Khouzani, K., Soltanian-Zadeh, H.: Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 1004–1008 (2005)

    Article  Google Scholar 

  39. Loram, I.D., Maganaris, C.N., Lakie, M.: Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length. J. Appl. Physiol. 100(4), 1311–1323 (2006)

    Article  Google Scholar 

  40. Zhou, Y., Zheng, Y.-P.: Longitudinal enhancement of the hyperechoic regions in ultrasonography of muscles using a gabor filter bank approach: a preparation for semi-automatic muscle fiber orientation estimation. Ultrasound Med. Biol. 37(4), 665–673 (2011)

    Article  Google Scholar 

  41. Yuan, C., Chen, Z., Wang, M., Zhang, J., Sun, K., Zhou, Y.: Dynamic measurement of pennation angle of gastrocnemius muscles obtained from ultrasound images based on gradient Radon transform. Biomed. Sig. Process. Control 55, 101604 (2020)

    Google Scholar 

  42. Frontera, W.R., Ochala, J.: Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96(3), 183–195 (2015)

    Article  Google Scholar 

  43. Ma, C.Z.H., et al.: Towards wearable comprehensive capture and analysis of skeletal muscle activity during human locomotion. Sensors (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjin Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Y., Zheng, YP. (2021). Measurement of Skeletal Muscle Pennation Angle. In: Sonomyography. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-7140-1_3

Download citation

Publish with us

Policies and ethics