Skip to main content

Electrochemical Sensors for the Detection of Food Adulterants in Miniaturized Settings

  • Chapter
  • First Online:
Nanosensing and Bioanalytical Technologies in Food Quality Control

Abstract

Intentional and unintentional adulteration of food deceives the people and can cause risk to their health. This book chapter provides an overview about the classification of adulterants and types of food adulteration in different food samples such as milk, meat, fish, vegetables, water, and fruit juices and also the conventional methods employed to detect adulteration. The main focus of this book chapter is to provide a detailed review of the different kinds of miniaturized electrochemical sensors, applied for the detection of food adulterants like melamine, urea, hydrogen peroxide, formaldehyde, inappropriate animal meat, synthetic dyes, pesticides, fungicides, veterinary drugs, microbial toxins, and heavy metal ions. Finally, the overall observation, challenges, and future recommendation about the electrochemical sensors were discussed towards the transformation of the research findings into sensitive and affordable miniaturized devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham DA, Vasantha VS (2020) Hollow Polypyrrole composite synthesis for detection of trace-level toxic herbicide. ACS Omega 5(34):21458–21467

    PubMed  PubMed Central  Google Scholar 

  • Afkhami A, Hashemi P, Bagheri H, Salimian J, Ahmadi A, Madrakian T (2017) Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene chitosan composite. Biosens Bioelectron 93:124–131

    CAS  PubMed  Google Scholar 

  • Aghoutane Y, Diouf A, Österlund BB, El Bari N (2020) Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry 132:107404

    CAS  PubMed  Google Scholar 

  • Al’Abri AM, Abdul Halim SN, Abu Bakar NK, Saharin SM, Sherino B, Rashidi Nodeh H, Mohamad S (2019) Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. J Environ Sci Health B 54(12):930–941

    PubMed  Google Scholar 

  • Arulraj AD, Vijayan M, Samseya J, Vasantha VS (2014) A simple and highly sensitive electrochemically reduced p-nitrobenzoic acid film modified sensor for determination of mercury. Electroanalysis 26:2773–2782

    CAS  Google Scholar 

  • Arulraj AD, Vijayan M, Vasantha VS (2015) Highly selective and sensitive simple sensor based on electrochemically treated nanopolypyrrole-sodium dodecyl sulphate film for the detection of para-nitrophenol. Anal Chim Acta 899:66–74

    CAS  PubMed  Google Scholar 

  • Arulraj AD, Devasenathipathy R, Chen SM, Vasantha VS, Wang SF (2016) Femtomolar detection of mercuric ions using polypyrrole, pectin and graphene nanocomposites modified electrode. J Colloid Interface Sci 483:268–274

    CAS  PubMed  Google Scholar 

  • Arun S, Rao VK, Kamboj DV, Gaur R, Shaik M, Shrivastava AR (2016) Enzyme free detection of staphylococcal enterotoxin B (SEB) using ferrocene carboxylic acid labeled monoclonal antibodies: an electrochemical approach. New J Chem 40:8334–8341

    Google Scholar 

  • Arun S, Vepa KR, Dev VK (2020) Electrochemical immunosensor for the detection of Staphylococcal Enterotoxin B using screen-printed electrodes. Indian J Chem 59A:174–180

    Google Scholar 

  • Azad T, Ahmed S (2016) Common milk adulteration and their detection techniques. Int J Food Contam 3(1):1–9

    Google Scholar 

  • Baabu PRS, Srinivasan P, Kulandaisamy AJ, Robinson J, Geevaretnam J, Rayappan JB (2020) A non-enzymatic electrochemical biosensor for the detection of formalin levels in fishes: realization of a novel comparator effect based on electrolyte. Anal Chim Acta 1139:50–58

    Google Scholar 

  • Bai X, Zhang B, Liu M, Hu X, Fang G, Wang S (2020) Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@ graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox. Bioelectrochemistry 132:107398

    CAS  PubMed  Google Scholar 

  • Baksh H, Buledi JA, Khand NH, Solangi AR, Mallah A, Sherazi ST, Abro MI (2020) Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. MonatsheftefürChemie-Chem Monthly 151(11):1689–1696

    CAS  Google Scholar 

  • Bakytkarim Y, Tursynbolat S, Zeng Q, Huang J, Wang L (2019) Nanomaterial ink for on-site painted sensor on studies of the electrochemical detection of organophosphorus pesticide residuals of supermarket vegetables. J Electroanal Chem 841:45–50

    CAS  Google Scholar 

  • Balaji Viswanath K, Krithiga N, Jayachitra A, Sheik Mideen AK, Amali AJ, Vasantha VS (2018) Enzyme-free multiplex detection of pseudomonas aeruginosa and aeromonashydrophila with ferrocene and thionine-labeled antibodies using ZIF-8/Au NPs as a platform. ACS Omega 12:17010–17022

    Google Scholar 

  • Banerjee et al (2017) Recent advances in detection of food adulteration. Academic Press, Food Safety in the 21st Century, Public Health Perspective. pp. 145-160

    Google Scholar 

  • Bansal S, Singh A, Mangal M, Mangal AK, Kumar S (2017) Food adulteration sources health risks and detection methods. Crit Rev Food Sci Nutr 57(6):1174–1189

    CAS  PubMed  Google Scholar 

  • Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455

    CAS  PubMed  Google Scholar 

  • Bhardwaj R, Rao RP, Mukherjee I, Agrawal PK, Basu T, Bharadwaj LM (2020) Layered construction of nanoimmuno-hybrid embedded MOF as an electrochemical sensor for rapid quantification of total pesticides load in vegetable extract. J Electroanal Chem 873:114386

    Google Scholar 

  • Bijad M, Karimi-Maleh H, Farsi M, Shahidi SA (2018) An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J Food Meas Charact 12(1):634–640

    Google Scholar 

  • Bin WA, Chang YH, Zhi LJ (2011) High yield production of graphene and its improved property in detecting heavy metal ions. New Carbon Mater 26:31–35

    Google Scholar 

  • Bratakou S, Nikoleli GP, Siontorou CG, Nikolelis DP, Karapetis S, Tzamtzis N (2016) Development of an electrochemical biosensor for the rapid detection of saxitoxin based on air stable lipid films with incorporated anti-STX using graphene electrodes. Electroanalysis 29:1–9

    Google Scholar 

  • Campuzano S, Montiel VRV, Torrente-Rodríguez M, Reviejo J, Pingarrón JM (2016) Electrochemical biosensors for food security: allergens and adulterants detection. In: Biosensors for security and bioterrorism applications. Springer, Cham, pp 287–307

    Google Scholar 

  • Campuzano S, Montiel V-RV, Serafín V, Yáñez-Sedeño P, Pingarrón JM (2020) Cutting-edge advances in electrochemical affinity biosensing at different molecular level of emerging food allergens and adulterants. Biosensors 10(2):10

    CAS  PubMed Central  Google Scholar 

  • Chandra P, Koh WCA, Noh HB, Shim YB (2012) In vitro monitoring of i-NOS concentrations with an immunosensor: The inhibitory effect of endocrine disruptors on i-NOS release. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2011.11.027

  • Chen X, Wu K, Sun Y, Song X (2013) Highly sensitive electrochemical sensor for sunset yellow based on the enhancement effect of alumina microfibers. Sens Actuators B 185:582–586

    CAS  Google Scholar 

  • Choudhary M, Yadav P, Singh A, Kaur S, Ramirez-Vick J, Chandra P, Arora K, Singh SP (2016) CD 59 Targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28:2565–2574. https://doi.org/10.1002/elan.201600238

    Article  CAS  Google Scholar 

  • Cui L, Wu J, Ju H (2016) Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens Bioelectron 79:861–865

    CAS  PubMed  Google Scholar 

  • Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd (II) and Pb (II). Chem Eng J 299:150–155

    CAS  Google Scholar 

  • Daizy M, Tarafder C, Al-Mamun MR, Liu X, Aly Saad Aly M, Khan MZH (2019) Electrochemical detection of melamine by using reduced graphene oxide-copper nanoflowers modified glassy carbon electrode. ACS Omega 4(23):20324–20329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deka S, Saxena V, Hasan A, Chandra P, Pandey LM (2018) Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater Sci Eng C 92:932–941. https://doi.org/10.1016/j.msec.2018.07.042

    Article  CAS  Google Scholar 

  • Dou W, Tang W, Zhao G (2013) A disposable electrochemical immunosensor arrays using 4-channel, screen-printed carbon electrode for simultaneous detection of Escherichia coli O157:H7 and Enterobactersakazakii. Electrochim Acta 97:79–85

    CAS  Google Scholar 

  • Ezhilan M, Gumpu MB, Ramachandra BL, Nesakumar N, Babu KJ, Krishnan UM, Rayappan JBB (2017) Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples. Sens Actuators B 238:1283–1292

    CAS  Google Scholar 

  • Gannavarapu KP, Ganesh V, Thakkar M, Mitra S, Dandamudi RB (2019) Nanostructured diatom-ZrO2 composite as a selective and highly sensitive enzyme free electrochemical sensor for detection of methyl parathion. Sens Actuators B 288:611–617

    CAS  Google Scholar 

  • Gao X, Gao Y, Bian C, Ma H, Liu H (2019) Electroactivenanoporous gold driven electrochemical sensor for the simultaneous detection of carbendazim and methyl parathion. Electrochim Acta 310:78–85

    CAS  Google Scholar 

  • Guidelines for Drinking-Water Quality, (2011). 4th ed., World Health Organization, Switzerland

    Google Scholar 

  • Hartati YW, Suryani AA, Agustina M, Gaffar S, Anggraeni A (2019) A gold nanoparticle-DNA bioconjugate–based electrochemical biosensor for detection of Sus scrofamt DNA in raw and processed meat. Food Anal Methods 12(11):2591–2600

    Google Scholar 

  • Heydari M, Ghoreishi SM, Khoobi A (2019) Chemometrics-assisted determination of Sudan dyes using zinc oxide nanoparticle-based electrochemical sensor. Food Chem 283:68–72

    CAS  PubMed  Google Scholar 

  • Hoffmann S, Anekwe TD (2013) Making sense of recent cost-of-foodborne-illness estimates, EIB-118. US Department of Agriculture, Economic Research Service, Washington, DC

    Google Scholar 

  • Hou L, Jiang L, Song Y, Ding Y, Zhang J, Wu X, Tang D (2016a) Amperometric aptasensor for saxitoxin using a gold electrode modified with carbon nanotubes on a self-assembled monolayer, and methylene blue as an electrochemical indicator probe. Microchim Acta 183:1971–1980

    CAS  Google Scholar 

  • Hou L, Ding Y, Zhang L, Guo Y, Li M, Chen Z, Wu X (2016b) An ultrasensitive competitive immunosensor for impedimetric detection of microcystin-LR via antibody-conjugated enzymatic biocatalyticprecipitation. Sens Actuators B 23:363–370

    Google Scholar 

  • Huang H, Chen T, Liu X, Ma H (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 852:45–54

    CAS  PubMed  Google Scholar 

  • Huang X, Wei S, Yao S, Zhang H, He C, Cao J (2019) Development of molecularly imprinted electrochemical sensor with reduced graphene oxide and titanium dioxide enhanced performance for the detection of toltrazuril in chicken muscle and egg. J Pharm Biomed Anal 164:607–614

    CAS  PubMed  Google Scholar 

  • Jing S, Zheng H, Zhao L, Qu L, Yu L (2017) Electrochemical sensor based on poly (sodium 4-styrenesulfonate) functionalized graphene and Co3O4 nanoparticle clusters for detection of amaranth in soft drinks. Food Anal Methods 10(9):3149–3157

    Google Scholar 

  • Jun-shi C (2009) A worldwide food safety concern in 2008- melamine-contaminated infant formula in China caused urinary tract stone in 290,000 children in China. Chin Med J (Engl) 122(3):243–244

    Google Scholar 

  • Kadir Abdul MK, Tothill IE (2010) Development of an electrochemical immunosensor for fumonisins detection in foods. Toxins 2:382–398

    Google Scholar 

  • Karimi A, Husain SW, Hosseini M, Azar PA, Ganjali MR (2018) Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sens Actuators B 271:90–96

    CAS  Google Scholar 

  • Khalil I, Yehye WA, Muhd Julkapli N, Ibn Sina AA, Rahmati S, Basiruna WJ, Seyfoddinf A (2020) Dual platform based sandwich assay surfaceenhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration. Analyst 145:1414–1426

    CAS  PubMed  Google Scholar 

  • Kundu M, Bhardwaj H, Pandey K, Krishnan P, Kotnala R. K, Sumana G (2019) Development of electrochemical biosensor based on CNT–Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice. J Food Sci Technol 56(4): 1829-1840

    Google Scholar 

  • Li F, Wang X, Sun X, Guo Y (2017) An aptasensor with dsDNA for rapid and highly sensitive detection of kanamycin in milk. RSC Adv 7(62):38981–38988

    CAS  Google Scholar 

  • Li S, Zhang C, Wang S, Liu Q, Feng H, Ma X, Guo J (2018) Electrochemical microfluidics techniques for heavy metal ions detection. Analyst 143:4230–4246

    CAS  PubMed  Google Scholar 

  • Lian W, Liu S, Yu J, Li J, Cui M, Xu W, Huang J (2013) Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens Bioelectron 44:70–76

    CAS  PubMed  Google Scholar 

  • Lim SA, Ahmed MU (2016) A label free electrochemical immunosensor for sensitive detection of porcine serum albumin as a marker for pork adulteration in raw meat. Food Chem 206:197–203

    PubMed  Google Scholar 

  • Lin Y, Lin Y, Tang D, Chen G, Tang D (2015) Simple and sensitive detection of aflatoxin B1 within five minute using a non-conventional competitive immunosensing mode. Biosens Bioelectron 74:680–686

    CAS  PubMed  Google Scholar 

  • Liu B, Tang D, Zhang B, Que X, Yang H, Chen G (2013) Au (III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosens Bioelectron 41:551–556

    CAS  PubMed  Google Scholar 

  • Liu G, Zhang Y, Guo W (2014) Covalent functionalization of gold nanoparticles as electronic bridges and signal amplifiers towards an electrochemical immunosensor for botulinum neurotoxin typeA. Biosens Bioelectron 61:547–533

    PubMed  Google Scholar 

  • Liu J, Moakhar R. S, Perumal A. S, Roman H. N, Mahshid S, Wachsmann-Hogiu S (2020) An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. Sci Rep 10(1):1-11

    Google Scholar 

  • Luong JH, Lam E, Male KB (2014) Recent advances in electrochemical detection of arsenic in drinking and groundwaters. Anal Methods 6:6157–6169

    CAS  Google Scholar 

  • Ma H, Sun J, Zhang Y, Bian C, Xia S, Zhen T (2016) Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxinB1 in maize. Biosens Bioelectron 80:222–229

    CAS  PubMed  Google Scholar 

  • Mahato K, Kumar S, Srivastava A, Maurya PK, Singh R, Chandra P (2018) Electrochemical immunosensors: fundamentals and applications in clinical diagnostics. In: Handbook of immunoassay technologies. https://doi.org/10.1016/B978-0-12-811762-0.00014-1

    Chapter  Google Scholar 

  • Mandli J, Fatimi IE, Seddaoui N, Amine A (2018) Enzyme immunoassay (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat. Food Chem 255:380–389

    CAS  PubMed  Google Scholar 

  • Mani G, Rajaji U, Wang SF, Chang YJ, Ramalingam RJ, Chan CY (2020) Investigation of sonochemically synthesized sphere-like metal tungstate nanocrystals decorated activated carbon sheets network and its application towards highly sensitive detection of arsenic drug in biological samples. J Taiwan Inst Chem Eng 114:211–219

    Google Scholar 

  • Mansouri M, Khalilzadeh B, Barzegari A, Shoeibi S, Isildak S, Bargahi N, Omidi Y, Dastmalchi S, Rashidi MR (2020a) Design a highly specific sequence for electrochemical evaluation of meat adulteration in cooked sausages. Biosens Bioelectron 150:111916

    CAS  PubMed  Google Scholar 

  • Mansouri M, Fathi F, Jalili R, Shoeibie S, Dastmalchie S, Khataee A, Rashidia MR (2020b) SPR enhanced DNA biosensor for sensitive detection of donkey meat adulteration. Food Chem 331:127163

    CAS  PubMed  Google Scholar 

  • Marzuki N, Bakar FA, Salleh AB, Heng LY, Yusof NA, Siddiquee S (2012) Electrochemical biosensor immobilization of formaldehyde dehydrogenase with nafion for determination of formaldehyde from Indian mackerel (Rastrelliger kanagurta) fish. Curr Anal Chem 8(4):534–542

    CAS  Google Scholar 

  • Mert S, Bankoğlu B, Özkan A, Atar N, Yola ML (2018) Electrochemical sensing of ractopamine by carbon nitride nanotubes/ionic liquid nanohybrid in presence of other β-agonists. J Mol Liq 254:8–11

    CAS  Google Scholar 

  • Migliorini FL, Sanfelice RC, Mercante LA, Andre RS, Mattoso LH, Correa DS (2018) Urea impedimetric biosensing using electrospunnanofibers modified with zinc oxide nanoparticles. Appl Surf Sci 443:18–23

    CAS  Google Scholar 

  • Misaghpour F, Shabani-Nooshabadi M (2018) An electrochemical sensor for analysis of food red 17 in the presence of tartrazine in food products amplified with CdO/rGO Nanocomposite and 1,3-dipropylimidazolium bromide. Food Anal Methods 11:646–653

    Google Scholar 

  • Montiel V, Gutiérrez ML, Torrente-Rodríguez RM, Povedano E, Vargas E, Reviejo AJ, Pingarrón JM (2017) Disposable amperometric polymerase chain reaction-free biosensor for direct detection of adulteration with horsemeat in raw lysates targeting mitochondrial DNA. Anal Chem 89(17):9474–9482

    Google Scholar 

  • Munir A, Shah A, Piro B (2018) Development of a selective electrochemical sensing platform for the simultaneous detection of Tl+, Cu2+, Hg2+, and Zn2+ ions. J Electrochem Soc 165:B399–B406

    CAS  Google Scholar 

  • Naik TSK, Saravanan S, Sri Saravana KN, Utkarsh P, Praveen CR (2020) A non-enzymatic urea sensor based on the nickel sulfide/graphene oxide modified glassy carbon electrode. Mater Chem Phys 245:122798

    Google Scholar 

  • Narayanan J, Mukesh KS, Ponmariappan S, Sarita MS, Sanjay U (2015) Electrochemical immunosensor for botulinum neurotoxin type-E using covalently ordered graphene nanosheets modified electrodes and gold nanoparticles-enzyme conjugate. Biosens Bioelectron 69:249–256

    CAS  PubMed  Google Scholar 

  • Nascimento CF, Santos PM, Pereira-Filho ER, Rocha RP (2017) Recent advances on determination of milk adulterants. Food Chem 221:1232–1244

    CAS  PubMed  Google Scholar 

  • Pal M, Meenu M (2020) Food adulteration: a global public health concern. Food Drink Indust:38–40

    Google Scholar 

  • Pramanik D, Dey SG (2011) Active site environment of heme-bound amyloid βpeptide associated with Alzheimer’s disease. J Am Chem Soc 133(1):81–87

    CAS  PubMed  Google Scholar 

  • Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electro chemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors Actuators B: Chem 207:526–534

    CAS  Google Scholar 

  • Rajaji U, Murugan K, Chen SM, Govindasamy M, Tse-Wei C, Lin PH, Lakshmi Prabha P (2019) Graphene oxide encapsulated 3D porous chalcopyrite (CuFeS2) nanocomposite as an emerging electrocatalyst for agro-hazardous (methyl paraoxon) detection in vegetables. Compos Part B Eng 160:268–276

    CAS  Google Scholar 

  • Ramesh R, Puhazhendi P, Kumar J, Gowthaman MK, D'Souza SF, Kamini NR (2015) Potentiometric biosensor for determination of urea in milk using immobilized Arthrobacter creatinolyticus urease. Mater Sci Eng C 49:786–792

    CAS  Google Scholar 

  • Rattanarat P, Dungchai W, Cate D, Volckens J, Chailapakul O, Henry CS (2014) Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal Chem 86:3555–3562

    CAS  PubMed  Google Scholar 

  • Ravi AK, Punnakkal N, Vasu SP, Nair BG, Satheesh Babu TG (2020) Manganese dioxide based electrochemical sensor for the detection of nitro-group containing organophosphates in vegetables and drinking water samples. J Electroanal Chem 859:113841

    CAS  Google Scholar 

  • Rebechi SR, Vélez MA, Vaira S, Perotti MC (2016) Adulteration of Argentinean milk fats with animal fats: detection by fatty acids analysis and multivariate regression techniques. Food Chem 192:1025–1032

    CAS  PubMed  Google Scholar 

  • Regasa M B, Soreta T R, Femi O E, Praveen C. R, Saravanan S (2020) Novel multifunctional molecular recognition elements based on molecularly imprinted poly (aniline-co-itaconic acid) composite thin film for melamine electrochemical detection. Sensing Bio-Sensing Res 27:100318

    Google Scholar 

  • Rodrigues SA, Clésia CN (2013) Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry. Talanta 105:272–277

    Google Scholar 

  • Rodrigues JA, Rodrigues CM, Almeida PJ, Valente IM, Gonçalves LM, Compton RG, Barros AA (2011) Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition. Anal Chim Acta 701(2):152–156

    CAS  PubMed  Google Scholar 

  • Ruiyi L, Qianfang X, Zaijun L, Xiulan S, Junkang L (2013) Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene–gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Biosens Bioelectron 44(15):235–240

    PubMed  Google Scholar 

  • Şenocak A, Köksoy B, Akyüz D, Koca A, Klyamer D, Basova T, Durmuş M (2019) Highly selective and ultra-sensitive electrochemical sensor behavior of 3D SWCNT-BODIPY hybrid material for eserine detection. Biosens Bioelectron 128:144–150

    PubMed  Google Scholar 

  • Shah A (2020) A novel electrochemical nanosensor for the simultaneous sensing of two toxic food dyes. ACS Omega 5(11):6187–6193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shalini Devi KS, Anusha N, Raja S, Senthil Kumar A (2018) A new strategy for direct electrochemical sensing of a organophosphorus pesticide, triazophos, using a coomassie brilliant-blue dye surface-confined carbon-black-nanoparticle-modified electrode. ACS Appl Nano Mater 1(8):4110–4119

    CAS  Google Scholar 

  • Shang L, Zhao F, Zeng B (2014) 3D porous graphene-porous PdCu alloy nanoparticles-molecularly imprinted poly (para-aminobenzoic acid) composite for the electrocatalytic assay of melamine. ACS Appl Mater Interfaces 6(21):18721–18727

    CAS  PubMed  Google Scholar 

  • Singh AK, Singh M, Verma N (2020) Electrochemical preparation of Fe3O4/MWCNT-polyaniline nanocomposite film for development of urea biosensor and its application in milk sample. J Food Meas Charact 14(1):163–175

    Google Scholar 

  • Syed Imran AM, Konstantinos G, Yiannaka A (2020) Cornhusker economics. Economic Impacts of Food Fraud Agric Econ:29. (https://agecon.unl.edu/cornhusker-economics/2020/economic-impacts-food-fraud.pdf)

  • Tang D, Zhong Z, Niessner R, Knopp D (2009) Multifunctional magnetic bead-based electrochemical immunoassay for the detection of aflatoxin B1 in food. Analyst 134:1554–1560

    CAS  PubMed  Google Scholar 

  • Tang D, Tang J, Su B, Chen G (2010) Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin b in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. J Agric Food Chem 58:10824–10830

    CAS  PubMed  Google Scholar 

  • Thangarasu R, Victor VD, Alagumuthu M (2019) MnO2/PANI/rGO–A modified carbon electrode based electrochemical sensor to detect organophosphate pesticide in real food samples. Anal Bioanal Electrochem 11(4):427–447

    CAS  Google Scholar 

  • Tripathy S, Ghole AR, Deep K, Vanjari S, Singh SG (2017) A comprehensive approach for milk adulteration detection using inherent bio-physical properties as ‘Universal Markers’: towards a miniaturized adulteration detection platform. Food Chem 217:756–765

    CAS  PubMed  Google Scholar 

  • Tvorynska S, Josypčuk B, Barek J, Dubenska L (2019) Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes amaranth and allura red AC on amalgam electrodes. Food Anal Methods 12(2):409–421

    Google Scholar 

  • Verma S, Choudhary J, Singh KP, Chandra P, Singh SP (2019) Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.02.121

  • Walsh GK, Salaün P, Van den Berg CM (2010) Arsenic speciation in natural waters by cathodic stripping voltammetry. Anal Chim Acta 662:1–8

    Google Scholar 

  • Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Liu L, Peng C, Jin Z, Xu C, Kotov NA (2009) Simple, rapid, sensitive, and versatile swnt-paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9(12):4147–4152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Luo B, Liang M, Wang A, Wang J, Fang Y, Chang Y, Zhi L (2011) Chem Nanoscale 3:5059–5066

    CAS  Google Scholar 

  • Wang Q, Fang J, Cao D, Li H, Su K, Hu N, Wang P (2013) Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosens Bioelectron 49:492–498

    CAS  PubMed  Google Scholar 

  • Wang D, Hu W, Xiong Y, Xu Y, Li CM (2015a) Multifunctionalized reduced graphene oxide-doped polypyrrole/ pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B1. Biosens Bioelectron 63:185–189

    CAS  PubMed  Google Scholar 

  • Wang Q, Kaiqi S, Liang H, Ling Z, Tianxing W, Liujing Z, Ning H, Ping W (2015b) A novel and functional assay for pharmacological effects of marinetoxins, saxitoxin and tetrodotoxin by cardiomyocyte-based impedance biosensor. Sens Actuators B 209:828–837

    CAS  Google Scholar 

  • Wang Y, Wang L, Huang W, Zhang T, Hu X, Perman JA, Ma S (2017a) A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J Mater Chem A 5:8385–8393

    CAS  Google Scholar 

  • Wang J, Wang Y, Cui M, Xu S, Luo X (2017b) Enzymelessvoltammetric hydrogen peroxide sensor based on the use of PEDOT doped with Prussian Blue nanoparticles. Microchim Acta 184(2):483–489

    CAS  Google Scholar 

  • Wang P, Li H, Hassan MM, Guo Z, Zhang ZZ, Chen Q (2019) Fabricating an Acetylcholinesterase modulated UCNPs-Cu2+ fluorescence biosensor for ultrasensitive detection of organophosphorus pesticides-diazinon in Food. J Agric Food Chem 67:4071–4079

    CAS  PubMed  Google Scholar 

  • Wang C, Song Q, Liu X, Zhu X (2020) Development of electrochemical sensor based on graphene oxide electrode modified by silver-doped ZnO nanorods for detection of carbamate pesticide in food. Int J Electrochem Sci 15:5623–5631

    CAS  Google Scholar 

  • Wei Q, Zhao Y, Du B, Wu D, Cai Y, Mao K, Li H, Xu C (2011) Nanoporous Pt-Ru alloy enhanced nonenzymatic immunosensor for ultrasensitive detection of microcystin-LR. Adv Funct Mater 21:4193–4198

    CAS  Google Scholar 

  • Wei Y, Gao C, Meng FL, Li HH, Wang L, Liu JH, Huang XJ (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II): an interesting favorable mutual interference. J Phys Chem C 116:1034–1041

    CAS  Google Scholar 

  • Wei J, Li SS, Guo Z, Chen X, Liu JH, Huang XJ (2016) Adsorbent assisted in situ electrocatalysis: an ultra-sensitive detection of As(III) in water at Fe3O4 Nanosphere densely decorated , with Au nanoparticles. AnalChem 88:1154–1161

    CAS  Google Scholar 

  • Xi H, Chen X, Cao Y, Xu J, Ye C, Deng D, Huang G (2020) Electrochemical determination of formaldehyde via reduced AuNPs@ PPy composites modified electrode. Microchem J 156:104846

    CAS  Google Scholar 

  • Xia S, Tong J, Bian C, Sun J, Li Y (2018) Microsensors and systems for water quality determination. In: Huang QA (ed) Micro electro mechanical systems. Micro/nano technologies. Springer, Singapore

    Google Scholar 

  • Xiaoyan Q, Yan X, Zhao L, Huang Y, Wang S, Liang X (2019) A facile label-free electrochemical aptasensor constructed with nanotetrahedron and aptamer-triplex for sensitive detection of small molecule: saxitoxin. Electroanal Chem 858:113805

    Google Scholar 

  • Xiong X, Shi X, Liu Y, Lu L, You J (2018) An aptamer-based electrochemical biosensor for simple and sensitive detection of staphylococcal enterotoxin B in milk. Anal Methods 10(3):365–370

    CAS  Google Scholar 

  • Xu M, Wang R, Li Y (2016) An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bifunctional glucose oxidase-polydopamine nano composites and Prussian blue modified screen-printed interdigitated electrode. Analyst 141(5441)

    Google Scholar 

  • Xu S, Lin G, Zhao W, Wu Q, Luo J, Wei W, Zhu Y (2018) Necklace-like molecularly imprinted nanohybrids based on polymeric nanoparticles decorated multiwalled carbon nanotubes for highly sensitive and selective melamine detection. ACS Appl Mater Interfaces 10(29):24850–24859

    CAS  PubMed  Google Scholar 

  • Xuan X, Hossain MF, Park JY (2018) A fully integrated and miniaturized heavy-metal-detection sensor based on micro-patterned reduced graphene oxide. Sci Rep 6(1):1–8

    Google Scholar 

  • Yang G, Zhao F (2015) Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@ molecularly imprinted polymer. Biosens Bioelectron 64:416–422

    CAS  PubMed  Google Scholar 

  • Yang X, Xipeng Z, Xian Z, Ying Q, Mei L, Xiao L, Chaorui L, Yingli L, Huiming X, Jingfu Q (2015) a highly sensitive electrochemical immunosensor for fumonisin B1 detection in corn using single-walled carbon nanotubes/chitosan. Electroanalysis 27:2679–2687

    CAS  Google Scholar 

  • Yang M, Jeong SW, Chang SJ, Kim KH, Jang M, Kim CH, Bae NH, Sim GS, Kang T, Lee SJ, Choi BG (2016) Flexible and disposable sensing platforms based on newspaper. ACS Appl Mater Interfaces 8:34978–34984

    CAS  PubMed  Google Scholar 

  • Yao Y, Liu Y, Yang Z (2016) Highly sensitive electrochemical sensor for the food toxicant Sudan I based on a glassy carbon electrode modified with reduced graphene oxide decorated with Ag-Cu nanoparticles. Microchim Acta 183:3275–3283

    CAS  Google Scholar 

  • Yola ML, Atar N (2017) Electrochemical detection of atrazine by platinum nanoparticles/carbon nitride nanotubes with molecularly imprinted polymer. Ind Eng Chem Res 56(27):7631–7639

    CAS  Google Scholar 

  • Yu Y, Zhao H, Dong G, Yang R, Li L, Liu Y Zhang W (2015) Discrimination of milk adulterated with urea using voltammetric electronic tongue coupled with PCA-LSSVM. Int J Electrochem Sci 10(12):10119-10131

    Google Scholar 

  • Yukirda J, Kongsittikulb P, Qinc J, Chailapakuld O, Rodthongkum N (2018) ZnO@graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd (II) and Pb (II). Synth Met 245:251–259

    Google Scholar 

  • Yun M, Choe JE, You JM, Ahmed MS, Lee K, Üstündağ Z, Jeon S (2015) High catalytic activity of electrochemically reduced graphene composite toward electrochemical sensing of Orange II. Food Chem 169:114–119

    CAS  PubMed  Google Scholar 

  • Zaijun L, Zhongyun W, Xiulan S, Yinjun F, Peipei C (2010) A sensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel–ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B1 in bee pollen. Talenta 80:1632–1637

    Google Scholar 

  • Zeng L, Lei P, Dazhi W, Baoguo Y (2018) Electrochemical sensors for food safety. In: Mózsik G, Figler M (eds) Nutrition in health and disease—our challenges now and forthcoming time. IntechOpen. https://doi.org/10.5772/intechopen.82501

    Chapter  Google Scholar 

  • Zhang D, Zhang J, Li M, Li W, Aimaiti G, Tuersun G, Chu Q (2011) A novel miniaturised electrophoretic method for determining formaldehyde and acetaldehyde in food using 2-thiobarbituric acid derivatisation. Food Chem 129(1):206–212

    CAS  Google Scholar 

  • Zhang D, Ouyang S, Cai M, Zhang H, Ding S, Liu D, Cai P, Le Y, Hu QN (2020a) FADB-China: a molecular-level food adulteration database in China based on molecular fingerprints and similarity algorithms prediction expansion. Food Chem 327:127

    Google Scholar 

  • Zhang Y, Wang W, Lin Z, Liu B, Zhou X (2020b) Dual-output toehold-mediated strand displacement amplification for sensitive homogeneous electrochemical detection of specie-specific DNA sequences for species identification. Biosens Bioelectron 161:112256

    CAS  PubMed  Google Scholar 

  • Zhaoling J, Lifang Z, Chong Z, Xiao Z, Feiqun X (2014) SPE–UPLC–UV method for the determination of Toltrazuril and its two metabolite residues in chicken and porcine tissues. Chromatographia 77(23–24):1705–1712

    Google Scholar 

  • Zhou W, Li C, Sun C, Yang X (2016) Simultaneously determination of trace Cd2+ and Pb2+ based on l-cysteine/graphene modified glassy carbon electrode. Food Chem 192:351–357

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasantha Vairathevar Sivasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Periyasamy, A., Selvam, S., Chellakannu, A., Sivasamy, V.V., Mariakuttikan, J. (2022). Electrochemical Sensors for the Detection of Food Adulterants in Miniaturized Settings. In: Chandra, P., Panesar, P.S. (eds) Nanosensing and Bioanalytical Technologies in Food Quality Control. Springer, Singapore. https://doi.org/10.1007/978-981-16-7029-9_7

Download citation

Publish with us

Policies and ethics