Skip to main content

Aptamer-Based Technologies in Foodborne Pathogen Detection

  • Chapter
  • First Online:
Nanosensing and Bioanalytical Technologies in Food Quality Control
  • 507 Accesses

Abstract

Food safety is a severe problem facing the global public health system. Foodborne diseases caused by foodborne pathogens or their toxins are one of the main burdens of public health, which seriously hinder the global social and economic development. Therefore, the establishment of highly sensitive detection method is the primary task of prevention and control of foodborne pathogenic bacteria pollution. Traditional detection methods of pathogenic bacteria mainly rely on precision instruments, and these methods have high sensitivity and excellent accuracy, but time-consuming and tedious operation steps limit its application in on-site detection. Immunoassay and polymerase chain reaction (PCR) can solve the above problems to a certain extent, but the cost of obtaining antibodies is high, and PCR needs complex DNA extraction process. The emergence of aptamers has greatly overturned this detection limit. Aptamers are DNA or RNA sequences with a length of about 25–80 bases that bind to the targets with high affinity and specificity as antibodies, and it was obtained by the method called systematic evolution of ligands by exponential enrichment (SELEX). Aptamers can specifically bind to their target, in addition, they are more stable and easier to be prepared than antibodies, which make them widely used in the field of detection. So far, aptamer has been applied in various pathogen detection technologies, such as ELISA, fluorescence, electrochemical, surface-enhanced Raman scattering (SERS), which greatly promotes the development of rapid detection of pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens Bioelectron 68:149–155

    CAS  PubMed  Google Scholar 

  • Alamer S, Eissa S, Chinnappan R, Herron P, Zourob M (2018) Rapid colorimetric lactoferrin-based sandwich immunoassay on cotton swabs for the detection of foodborne pathogenic bacteria. Talanta 185:275–280

    CAS  PubMed  Google Scholar 

  • Bai Y, Feng F, Zhao L, Wang C, Wang H, Tian M, Qin J, Duan Y, He X (2013) Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens Bioelectron 47:265–270

    CAS  PubMed  Google Scholar 

  • Berezovski M, Musheev M, Drabovich A, Krylov SN (2006) Non-SELEX selection of aptamers. J Am Chem Soc 128(5):1410–1411

    CAS  PubMed  Google Scholar 

  • Berlina AN, Taranova NA, Zherdev AV, Vengerov YY, Dzantiev BB (2013) Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal Bioanal Chem 405(14):4997–5000

    CAS  PubMed  Google Scholar 

  • Breaker RR (1997) DNA aptamers and DNA enzymes. Curr Opin Chem Biol 1(1):26–31

    CAS  PubMed  Google Scholar 

  • Brigmon RL, Zam SG, Bitton G, Farrah SR (1992) Detection of Salmonella enteritidis in environmental samples by monoclonal antibody-based ELISA. J Immunol Methods 152(1):135–142

    CAS  PubMed  Google Scholar 

  • Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B, Shao N (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37(14):4621–4628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra P, Prakash R (2020) Nanobiomaterial engineering concepts and their applications in biomedicine and diagnostics: concepts and their applications in biomedicine and diagnostics. Springer

    Google Scholar 

  • Chandra P, Koh WCA, Noh HB, Shim YB (2012) In vitro monitoring of i-NOS concentrations with an immunosensor: the inhibitory effect of endocrine disruptors on i-NOS release. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2011.11.027

  • Chen W, Teng J, Yao L, Xu J, Liu G (2020) Selection of specific DNA Aptamers for hetero-sandwich-based colorimetric determination of Campylobacter jejuni in food. J Agric Food Chem 68(31):8455–8461

    CAS  PubMed  Google Scholar 

  • Choudhary M, Yadav P, Singh A, Kaur S, Ramirez-Vick J, Chandra P, Arora K, Singh SP (2016) CD 59 Targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28:2565–2574. https://doi.org/10.1002/elan.201600238

    Article  CAS  Google Scholar 

  • Chung J, Kang JS, Jurng JS, Jung JH, Kim BC (2015) Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens Bioelectron 67:303–308

    CAS  PubMed  Google Scholar 

  • Cowie SE, Ma I, Lee SK, Smith RM, Hsiang YN (2005) Nosocomial MRSA infection in vascular surgery patients: impact on patient outcome. Vasc Endovasc Surg 39(4):327–334

    Google Scholar 

  • Deka S, Saxena V, Hasan A, Chandra P, Pandey LM (2018) Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater Sci Eng C 92:932–941

    CAS  Google Scholar 

  • Drolet DW, Moon-McDermott L, Romig TS (1996) An enzyme-linked oligonucleotide assay. Nat Biotechnol 14(8):1021–1025

    CAS  PubMed  Google Scholar 

  • Duan N, Wu S, Yu Y, Ma X, Xia Y, Chen X, Huang Y, Wang Z (2013) A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Anal Chim Acta 804:151–158

    CAS  PubMed  Google Scholar 

  • Dwivedi HP, Smiley RD, Jaykus L-A (2013) Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97(8):3677–3686

    CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355(6363):850–852

    CAS  PubMed  Google Scholar 

  • Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874

    CAS  PubMed  Google Scholar 

  • Fan M, McBurnett SR, Andrews CJ, Allman AM, Bruno JG, Kiel JL (2008) Aptamer selection express: a novel method for rapid single-step selection and sensing of aptamers. J Biomol Tech 19(5):311–319

    PubMed  PubMed Central  Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55(3):476–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira CSM, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S (2008) DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem 390(4):1039–1050

    CAS  PubMed  Google Scholar 

  • Friedman CR, Torigian C, Shillam PJ, Hoffman RE, Heltze D, Beebe JL, Malcolm G, DeWitt WE, Hutwagner L, Griffin PM (1998) An outbreak of salmonellosis among children attending a reptile exhibit at a zoo. J Pediatr 132(5):802–807

    CAS  PubMed  Google Scholar 

  • Gopinath SCB (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182

    CAS  PubMed  Google Scholar 

  • Hai H, Yang F, Li J (2014) Highly sensitive electrochemiluminescence “turn-on” aptamer sensor for lead(II) ion based on the formation of a G-quadruplex on a graphene and gold nanoparticles modified electrode. Microchim Acta 181(9):893–901

    CAS  Google Scholar 

  • Hasegawa H, Sode K, Ikebukuro K (2008) Selection of DNA aptamers against VEGF165 using a protein competitor and the aptamer blotting method. Biotechnol Lett 30(5):829–834

    CAS  PubMed  Google Scholar 

  • Hedayati CM, Amani J, Sedighian H, Amin M, Salimian J, Halabian R, Imani Fooladi AA (2016) Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography. J Mol Recogn 29(9):436–445

    Google Scholar 

  • Hochel I, Viochna D, Škvor J, Musil M (2004) Development of an indirect competitive ELISA for detection of Campylobacter jejuni subsp. jejuni O:23 in foods. Folia Microbiol 49(5):579–586

    CAS  Google Scholar 

  • Hybarger G, Bynum J, Williams RF, Valdes JJ, Chambers JP (2006) A microfluidic SELEX prototype. Anal Bioanal Chem 384(1):191–198

    CAS  PubMed  Google Scholar 

  • Jenkins SH, Heineman WR, Halsall HB (1988) Extending the detection limit of solid-phase electrochemical enzyme immunoassay to the attomole level. Anal Biochem 168(2):292–299

    CAS  PubMed  Google Scholar 

  • Jiang Y, Zou S, Cao X (2016) Rapid and ultra-sensitive detection of foodborne pathogens by using miniaturized microfluidic devices: a review. Anal Methods 8(37):6668–6681

    Google Scholar 

  • Jin B, Yang Y, He R, Park YI, Lee A, Bai D, Li F, Lu TJ, Xu F, Lin M (2018) Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensors Actuators B Chem 276:48–56

    Google Scholar 

  • Karsunke XYZ, Niessner R, Seidel M (2009) Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. Anal Bioanal Chem 395(6):1623

    CAS  PubMed  Google Scholar 

  • Kim J, Demeke T, Clear RM, Patrick SK (2006) Simultaneous detection by PCR of Escherichia coli, Listeria monocytogenes and Salmonella typhimurium in artificially inoculated wheat grain. Int J Food Microbiol 111(1):21–25

    CAS  PubMed  Google Scholar 

  • Kim B, Jung IH, Kang M, Shim HK, Woo HY (2012) Cationic conjugated polyelectrolytes-triggered conformational change of molecular beacon aptamer for highly sensitive and selective potassium ion detection. J Am Chem Soc 134(6):3133–3138

    CAS  PubMed  Google Scholar 

  • Kim HR, Song MY, Chan Kim B (2020) Rapid isolation of bacteria-specific aptamers with a non-SELEX-based method. Anal Biochem 591:113542

    CAS  PubMed  Google Scholar 

  • Kong M, Shin JH, Heu S, Park J-K, Ryu S (2017) Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens Bioelectron 96:173–177

    CAS  PubMed  Google Scholar 

  • Kourany M (1983) Medium for isolation and differentiation of Vibrio parahaemolyticus and Vibrio alginolyticus. Appl Environ Microbiol 45(1):310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer M, Obermajer N, Bogovič Matijašić B, Rogelj I, Kmetec V (2009) Quantification of live and dead probiotic bacteria in lyophilised product by real-time PCR and by flow cytometry. Appl Microbiol Biotechnol 84(6):1137–1147

    CAS  PubMed  Google Scholar 

  • Kurt H, Yüce M, Hussain B, Budak H (2016) Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens Bioelectron 81:280–286

    CAS  PubMed  Google Scholar 

  • Lavu PSR, Mondal B, Ramlal S, Murali HS, Batra HV (2016) Selection and characterization of Aptamers using a modified whole cell bacterium SELEX for the detection of Salmonella enterica serovar typhimurium. ACS Comb Sci 18(6):292–301

    CAS  PubMed  Google Scholar 

  • Lazcka O, Campo FJD, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217

    CAS  PubMed  Google Scholar 

  • Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci 106(9):2989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo K, Ryu J, Seol I-H, Jeong K-B, You S-M, Kim Y-R (2019) Paper-based radial chromatographic immunoassay for the detection of pathogenic bacteria in milk. ACS Appl Mater Interfaces 11(50):46472–46478

    CAS  PubMed  Google Scholar 

  • Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agric Food Chem 55(13):4933–4939

    CAS  PubMed  Google Scholar 

  • Mahato K, Kumar S, Srivastava A, Maurya PK, Singh R, Chandra P (2018) Electrochemical immunosensors: fundamentals and applications in clinical diagnostics. In: Handbook of immunoassay technologies

    Google Scholar 

  • Mahon BE, Pönkä A, Hall WN, Komatsu K, Dietrich SE, Siitonen A, Cage G, Hayes PS, Lambert-Fair MA, Bean NH, Griffin PM, Slutsker L (1997) An international outbreak of salmonella infections caused by Alfalfa sprouts grown from contaminated seeds. J Infect Dis 175(4):876–882

    CAS  PubMed  Google Scholar 

  • Mayer G (2009) The chemical biology of Aptamers. Angew Chem Int Ed 48(15):2672–2689

    CAS  Google Scholar 

  • Medley CD, Bamrungsap S, Tan W, Smith JE (2011) Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 83(3):727–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosing RK, Mendonsa SD, Bowser MT (2005) Capillary electrophoresis-SELEX selection of Aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem 77(19):6107–6112

    CAS  PubMed  Google Scholar 

  • Murray EGD, Webb RA, Swann MBR (1926) A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (nsp). J Pathol Bacteriol 29(4):407–439

    Google Scholar 

  • Nightingale KK, Windham K, Wiedmann M (2005) Evolution and molecular phylogeny of Listeria monocytogenes; isolated from human and animal listeriosis cases and foods. J Bacteriol 187(16):5537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishibuchi M, Kaper JB (1995) Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect Immun 63(6):2093–2099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SY, Heo NS, Shukla S, Cho HJ, Vilian ATE, Kim J, Lee SY, Han YK, Yoo SM, Huh YS (2017) Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Sci Rep 7(1):10130

    PubMed  PubMed Central  Google Scholar 

  • Pang Y, Wan N, Shi L, Wang C, Sun Z, Xiao R, Wang S (2019) Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Anal Chim Acta 1077:288–296

    CAS  PubMed  Google Scholar 

  • Pitcher DG, Fry NK (2000) Molecular techniques for the detection and identification of new bacterial pathogens. J Infect 40(2):116–120

    CAS  PubMed  Google Scholar 

  • Purohit B, Vernekar PR, Shetti NP, Chandra P (2020) Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis. Sensors Int 1:100040

    Google Scholar 

  • Ren X, Gelinas AD, von Carlowitz I, Janjic N, Pyle AM (2017) Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling. Nat Commun 8(1):810

    PubMed  PubMed Central  Google Scholar 

  • Rhinehardt KL, Srinivas G, Mohan RV (2015) Molecular dynamics simulation analysis of anti-MUC1 Aptamer and Mucin 1 peptide binding. J Phys Chem B 119(22):6571–6583

    CAS  PubMed  Google Scholar 

  • Riegler J, Ditengou F, Palme K, Nann T (2008) Blue shift of CdSe/ZnS nanocrystal-labels upon DNA-hybridization. J Nanobiotechnol 6(1):7

    Google Scholar 

  • Sefah K, Yang Z, Bradley KM, Hoshika S, Jiménez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner SA (2014) In vitro selection with artificial expanded genetic information systems. Proc Natl Acad Sci 111(4):1449

    CAS  PubMed  Google Scholar 

  • Shen H, Wang J, Liu H, Li Z, Jiang F, Wang F-B, Yuan Q (2016) Rapid and selective detection of pathogenic bacteria in bloodstream infections with Aptamer-based recognition. ACS Appl Mater Interfaces 8(30):19371–19378

    CAS  PubMed  Google Scholar 

  • Stamm WE, Cutter BE, Grootes-Reuvecamp GA (1981) Enzyme immunoassay for detection of antibody-coated bacteria. J Clin Microbiol 13(1):42–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens KA, Jaykus L-A (2004) Bacterial separation and concentration from complex sample matrices: a review. Crit Rev Microbiol 30(1):7–24

    PubMed  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    CAS  PubMed  Google Scholar 

  • Stone A, Shaffer M, Sautter RL (1993) Salmonella poona infection and surveillance in a neonatal nursery. Am J Infect Control 21(5):270–273

    CAS  PubMed  Google Scholar 

  • Suman P, Chandra P (2021). Immunodiagnostic technologies from laboratory to point-of-care testing

    Google Scholar 

  • Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, Chen W, Li B (2016) Aptamer-based technologies in foodborne pathogen detection. Front Microbiol 7:1426–1426

    PubMed  PubMed Central  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505

    CAS  PubMed  Google Scholar 

  • Verma S, Choudhary J, Singh KP, Chandra P, Singh SP (2019) Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int J Biol Macromol

    Google Scholar 

  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications—an overview. Front Bioeng Biotechnol 4:11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-C, Wang Y-S, Rang W-Q, Xue J-H, Zhou B, Liu L, Qian Q-M, Wang Y-S, Yin J-C (2014) Colorimetric determination of 8-hydroxy–2′-deoxyguanosine using label-free aptamer and unmodified gold nanoparticles. Microchim Acta 181(9):903–910

    CAS  Google Scholar 

  • Wang J, Wu X, Wang C, Shao N, Dong P, Xiao R, Wang S (2015) Magnetically assisted surface-enhanced raman spectroscopy for the detection of Staphylococcus aureus based on Aptamer recognition. ACS Appl Mater Interfaces 7(37):20919–20929

    CAS  PubMed  Google Scholar 

  • Wang X, Niazi S, Yukun H, Sun W, Wu S, Duan N, Hun X, Wang Z (2017) Homogeneous time-resolved FRET assay for the detection of Salmonella typhimurium using aptamer-modified NaYF4:Ce/Tb nanoparticles and a fluorescent DNA label. Microchim Acta 184(10):4021–4027

    CAS  Google Scholar 

  • Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN (2019) Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 37(1):28–50

    CAS  PubMed  Google Scholar 

  • Watanabe K, Arakawa H, Maeda M (2002) Simultaneous detection of two verotoxin genes using dual-label time-resolved fluorescence immunoassay with duplex PCR. Luminescence: J Biol Chem Luminescence 17(2):123–129

    CAS  Google Scholar 

  • Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5):479–491

    CAS  Google Scholar 

  • Xu M, Wang R, Li Y (2017) Electrochemical biosensors for rapid detection of Escherichia coli O157: H7. Talanta 162:511–522

    CAS  PubMed  Google Scholar 

  • Yao J, Yang M, Duan Y (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114(12):6130–6178

    CAS  PubMed  Google Scholar 

  • Yao L, Ye Y, Teng J, Xue F, Pan D, Li B, Chen W (2017) In vitro isothermal nucleic acid amplification assisted surface-enhanced Raman spectroscopic for ultrasensitive detection of Vibrio parahaemolyticus. Anal Chem 89(18):9775–9780

    CAS  PubMed  Google Scholar 

  • Yoo SM, Kim D-K, Lee SY (2015) Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta 132:112–117

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, L., Teng, J., Chen, W. (2022). Aptamer-Based Technologies in Foodborne Pathogen Detection. In: Chandra, P., Panesar, P.S. (eds) Nanosensing and Bioanalytical Technologies in Food Quality Control. Springer, Singapore. https://doi.org/10.1007/978-981-16-7029-9_10

Download citation

Publish with us

Policies and ethics