Skip to main content

Functionalized Nanoparticles in Drug Delivery: Strategies to Enhance Direct Nose-to-Brain Drug Delivery via Integrated Nerve Pathways

  • Chapter
  • First Online:
Synthesis and Applications of Nanoparticles
  • The original version of this chapter was revised: a spelling error in the 2nd author’s name and the affiliation of the 5th author have been corrected. The correction to this chapter can be found at https://doi.org/10.1007/978-981-16-6819-7_26

Abstract

Nose-to-brain drug delivery system is becoming a desirable alternative approach to conventional drug delivery systems used for the treatment of various neurological disorders. Trigeminal and olfactory routes are implicated to deliver drugs from the nose-to-brain, which bypasses the blood-brain barrier and the first-pass metabolism. In this review, nanocarrier systems are evaluated, screened, and tested in order to evaluate its physiochemical features and configuration to enhance the bioavailability of drugs in the brain after intranasal intervention. The application of specific ligand, surface modifications, and use of permeation enhancers to increase brain targeting are discussed. Furthermore, we discuss the in vivo animal and in vitro cell line-based models, which are actively being employed to explore the nanomaterial-driven drug transport mechanisms via the intranasal route. These models can be used to study absorption, diffusion, permeation, and toxicological and pharmacokinetic profile of the active pharmaceutical ingredient. Our review provides evidence to conclude that the potential of nose-to-brain delivery and role of functionalization of nanomaterials enhance the drug efficacy in brain diseases. We also conclude that the biorecognitive surface modifiers have the ability to enhance and optimize the drug delivery to the brain, and we provided our insights and outlooks to address challenges and opportunities for nanosystems to speed up clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 25 August 2022

    A correction has been published.

References

  • Abd-Elal RM et al (2016) Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv 23(9):3374–3386

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman FE et al (2017) Response surface optimization, Ex vivo and In vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int J Pharm 530(1-2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Aderibigbe BA, Naki T (2019) Chitosan-based nanocarriers for nose to brain delivery. Appl Sci 9(11):2219

    Article  CAS  Google Scholar 

  • Agrawal M et al (2018) Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 281:139–177

    Article  CAS  PubMed  Google Scholar 

  • Agrawal M et al (2020) Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release

    Google Scholar 

  • Ahmad N et al (2018) Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy, Artificial Cells, Nanomedicine, and Biotechnology. 46(supp 3):S192–S207

    Google Scholar 

  • Alexander A et al (2019) Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 14:5895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand U, Feridooni T, Agu RU (2012) Novel mucoadhesive polymers for nasal drug delivery. Recent Adv Novel Drug Carrier Syst:315–330

    Google Scholar 

  • Azambuja J et al (2020) Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: a new therapeutical approach. Mol Neurobiol 57(2):635–649

    Article  CAS  PubMed  Google Scholar 

  • Bahadur S, Pathak K (2012) Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv 9(1):19–31

    Article  CAS  PubMed  Google Scholar 

  • Baranei M et al (2020) Anticancer effect of green tea extract (GTE)-loaded pH-responsive niosome coated with PEG against different cell lines. Mater Today Commun:101751

    Google Scholar 

  • Barani M et al (2018) Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: a Nano-herbal treatment for Cancer. DARU J Pharm Sci 26(1):11–17

    Article  CAS  Google Scholar 

  • Barani M et al (2019a) Evaluation of carum-loaded niosomes on breast cancer cells: physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  • Barani M et al (2019b) In silico and in vitro study of magnetic niosomes for gene delivery: the effect of ergosterol and cholesterol. Mater Sci Eng C 94:234–246

    Article  CAS  Google Scholar 

  • Barani M et al (2020a) A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Mater Sci Eng C:110975

    Google Scholar 

  • Barani M et al (2020b) Nanotreatment and nanodiagnosis of prostate cancer: recent updates. Nanomaterials 10(9):1696

    Article  CAS  PubMed Central  Google Scholar 

  • Barani M et al (2020c) Comprehensive evaluation of gene expression in negative and positive trigger-based targeting niosomes in HEK-293 cell line. Iran J Pharm Res 19(1):166–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barani M et al (2020d) Nanotechnology in ovarian cancer: diagnosis and treatment. Life Sci:118,914

    Google Scholar 

  • Barar J et al (2009) Ocular drug delivery; impact of in vitro cell culture models. J Ophthalmic Vis Res 4(4):238

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Barros T et al (2020) Cachexia: pathophysiology and ghrelin liposomes for nose-to-brain delivery. Int J Mol Sci 21(17):5974

    Article  CAS  Google Scholar 

  • Battaglia L et al (2018) Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opin Drug Deliv 15(4):369–378

    Article  CAS  PubMed  Google Scholar 

  • Betbeder D et al (2000) Biovector™ nanoparticles improve antinociceptive efficacy of nasal morphine. Pharm Res 17(6):743–748

    Article  CAS  PubMed  Google Scholar 

  • Bilal M et al (2020) Nanomaterials for the treatment and diagnosis of Alzheimer's disease: an overview. NanoImpact:100,251

    Google Scholar 

  • Bonferoni MC et al (2019) Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 11(2):84

    Article  CAS  PubMed Central  Google Scholar 

  • Chalikwar SS et al (2013) Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: design, development and ex vivo characterization. Polym-Plast Technol Eng 52(4):368–380

    Article  CAS  Google Scholar 

  • Chen J et al (2012) Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations. J Drug Target 20(2):174–184

    Article  CAS  PubMed  Google Scholar 

  • Clementino A et al (2016) The nasal delivery of nanoencapsulated statins–an approach for brain delivery. Int J Nanomedicine 11:6575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dae-Duk K (2007) Drug absorption studies: in situ, in vitro and in silico models. Springer, New York

    Google Scholar 

  • Das SS et al (2020) Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 12(6):1397

    Article  CAS  PubMed Central  Google Scholar 

  • Davarpanah F et al (2018) Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes. DARU J Pharm Sci 26(1):57–64

    Article  CAS  Google Scholar 

  • Davarpanah AM et al (2019) (1-x) BaFe12O19/xCoFe2O4 hard/soft magnetic nanocomposites: Synthesis, physical characterization, and antibacterial activities study. J Mol Struct 1175:445–449

    Article  CAS  Google Scholar 

  • van Den Berg MP et al (2002) Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity. J Neurosci Methods 116(1):99–107

    Article  PubMed  Google Scholar 

  • Devkar TB, Tekade AR, Khandelwal KR (2014) Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer. Colloids Surf B Biointerfaces 122:143–150

    Article  CAS  PubMed  Google Scholar 

  • Dhakar RC et al (2011) A review on factors affecting the design of nasal drug delivery system. Int J Drug Deliv 3(2):194

    CAS  Google Scholar 

  • Di Gioia S et al (2015) Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. Eur J Pharm Biopharm 94:180–193

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi AK, Barani M, Sheikhshoaie I (2018) Fabrication of a new superparamagnetic metal-organic framework with core-shell nanocomposite structures: characterization, biocompatibility, and drug release study. Mater Sci Eng C 92:349–355

    Article  CAS  Google Scholar 

  • Feng Y et al (2018) An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today 23(5):1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Fonseca FN et al (2015) Mucoadhesive amphiphilic methacrylic copolymer-functionalized poly (ε-caprolactone) nanocapsules for nose-to-brain delivery of olanzapine. J Biomed Nanotechnol 11(8):1472–1481

    Article  CAS  PubMed  Google Scholar 

  • Gabal YM et al (2014) Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int J Pharm 473(1-2):442–457

    Article  CAS  PubMed  Google Scholar 

  • Gänger S, Schindowski K (2018) Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 10(3):116

    Article  PubMed Central  CAS  Google Scholar 

  • Gao X et al (2006) Lectin-conjugated PEG–PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27(18):3482–3490

    Article  CAS  PubMed  Google Scholar 

  • Gao X et al (2007a) UEA I-bearing nanoparticles for brain delivery following intranasal administration. Int J Pharm 340(1-2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Gao X et al (2007b) Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release 121(3):156–167

    Article  CAS  PubMed  Google Scholar 

  • Gao X et al (2008) Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles. Biochem Biophys Res Commun 377(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Gao M et al (2011) Synthesis and characterization of superparamagnetic Fe3O4@ SiO2 core-shell composite nanoparticles. World Jf Condensed Matter Phys 1(2):49–54

    Article  CAS  Google Scholar 

  • Gartziandia O et al (2015) Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces 134:304–313

    Article  CAS  PubMed  Google Scholar 

  • Gartziandia O et al (2016) Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J Biomed Nanotechnol 12(12):2220–2280

    Article  CAS  PubMed  Google Scholar 

  • Ghazy E et al (2020a) Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid cancer: edifying drug targeting by nano-oncotherapeutics. J Drug Delivery Sci Technol:102,221

    Google Scholar 

  • Ghazy E et al (2020b) Nanomaterials for Parkinson disease: recent progress. J Mol Struct:129,698

    Google Scholar 

  • Ghosh S et al (2019) Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin Drug Deliv 16(12):1287–1311

    Article  PubMed  Google Scholar 

  • Grossen P et al (2017) PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release 260:46–60

    Article  CAS  PubMed  Google Scholar 

  • Guo J et al (2011) Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32(31):8010–8020

    Article  CAS  PubMed  Google Scholar 

  • Guo Y et al (2013) The applications of Vitamin E TPGS in drug delivery. Eur J Pharm Sci 49(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Gupta A (2020) Emerging applications of lectins in cancer detection and biomedicine. Mater Today: Proc 31:651–661

    CAS  Google Scholar 

  • Hajizadeh MR et al (2019a) In vitro cytotoxicity assay of D-limonene niosomes: an efficient nano-carrier for enhancing solubility of plant-extracted agents. Res Pharm Sci 14(5):448

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajizadeh MR et al (2019b) Diosgenin-loaded niosome as an effective phytochemical nanocarrier: physicochemical characterization, loading efficiency, and cytotoxicity assay. DARU J Pharm Sci 27(1):329–339

    Article  CAS  Google Scholar 

  • Hernando S et al (2018) Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol Neurobiol 55(1):145–155

    Article  CAS  PubMed  Google Scholar 

  • Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60(2):207–225

    Article  CAS  PubMed  Google Scholar 

  • Huckaby JT, Lai SK (2018) PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev 124:125–139

    Article  CAS  PubMed  Google Scholar 

  • Illum L (2007) Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci 96(3):473–483

    Article  CAS  PubMed  Google Scholar 

  • Jadhav KR et al (2007) Nasal drug delivery system-factors affecting and applications. Curr Drug Ther 2(1):27–38

    Article  CAS  Google Scholar 

  • Kamei N et al (2016) Visualization and quantitative assessment of the brain distribution of insulin through nose-to-brain delivery based on the cell-penetrating peptide noncovalent strategy. Mol Pharm 13(3):1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa T (2015) Brain delivery of small interfering ribonucleic acid and drugs through intranasal administration with nano-sized polymer micelles. Med Devices (Auckland, NZ) 8:57

    Google Scholar 

  • Kanazawa T et al (2011) Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm Res 28(9):2130–2139

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa T et al (2012) Suppression of tumor growth by systemic delivery of anti-VEGF siRNA with cell-penetrating peptide-modified MPEG–PCL nanomicelles. Eur J Pharm Biopharm 81(3):470–477

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa T et al (2013) Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials 34(36):9220–9226

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa T et al (2017) Enhancement of nose-to-brain delivery of hydrophilic macromolecules with stearate-or polyethylene glycol-modified arginine-rich peptide. Int J Pharm 530(1-2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa T et al (2019) Therapeutic effects in a transient middle cerebral artery occlusion rat model by nose-to-brain delivery of anti-TNF-alpha siRNA with cell-penetrating peptide-modified polymer micelles. Pharmaceutics 11(9):478

    Article  CAS  PubMed Central  Google Scholar 

  • Kulkarni AD et al (2015) Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: a mini review. J Drug Target 23(9):775–788

    Article  CAS  PubMed  Google Scholar 

  • Li Y-P et al (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release 71(2):203–211

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2011) Targeting the brain with PEG–PLGA nanoparticles modified with phage-displayed peptides. Biomaterials 32(21):4943–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin T et al (2016) Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm Sin B 6(4):352–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z et al (2013) Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 34(15):3870–3881

    Article  CAS  PubMed  Google Scholar 

  • Lu C-T et al (2015) Gelatin nanoparticle-mediated intranasal delivery of substance P protects against 6-hydroxydopamine-induced apoptosis: an in vitro and in vivo study. Drug Des Devel Ther 9:1955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins PP, Smyth HD, Cui Z (2019) Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm 570:118635

    Article  CAS  PubMed  Google Scholar 

  • Mathieu V (2019) Development and characterization of formulations for the nose-to-brain delivery of ghrelin and the management of cachexia. Université de Mons.

    Google Scholar 

  • Md S et al (2018) Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Delivery Sci Technol 43:295–310

    Article  CAS  Google Scholar 

  • Mena-Hernández J et al (2020) Preparation and evaluation of mebendazole microemulsion for intranasal delivery: an alternative approach for glioblastoma treatment. AAPS PharmSciTech 21(7):1–12

    Article  CAS  Google Scholar 

  • Meng Q et al (2018) Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 13:705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkus FW, van den Berg MP (2007) Can nasal drug delivery bypass the blood-brain barrier? Drugs in R & D 8(3):133–144

    Article  CAS  Google Scholar 

  • Migliore MM et al (2010) Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci 99(4):1745–1761

    Article  CAS  PubMed  Google Scholar 

  • Misra A, Kher G (2012) Drug delivery systems from nose to brain. Curr Pharm Biotechnol 13(12):2355–2379

    Article  CAS  PubMed  Google Scholar 

  • Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379(1):146–157

    Article  CAS  PubMed  Google Scholar 

  • Mittal D et al (2014) Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv 21(2):75–86

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar M et al (2020) Nanomaterials for diagnosis and treatment of brain cancer: recent updates. Chemsensors 8(4):117

    Article  CAS  Google Scholar 

  • Muralidharan P et al (2014) Inhalable PEGylated phospholipid nanocarriers and PEGylated therapeutics for respiratory delivery as aerosolized colloidal dispersions and dry powder inhalers. Pharmaceutics 6(2):333–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Musumeci T et al (2018) Tangential flow filtration technique: an overview on nanomedicine applications. Pharm Nanotechnol 6(1):48–60

    Article  CAS  PubMed  Google Scholar 

  • Nehoff H et al (2014) Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 9:2539

    PubMed  PubMed Central  Google Scholar 

  • Nikazar S et al (2020a) Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophys Rev:1–16

    Google Scholar 

  • Nikazar S et al (2020b) Photo-and magnetothermally responsive nanomaterials for therapy, controlled drug delivery and imaging applications. ChemistrySelect 5(40):12,590–12,609

    Article  CAS  Google Scholar 

  • Okada H (2014) Targeted siRNA therapy using cytoplasm-responsive nanocarriers and cell-penetrating peptides. J Pharm Investig 44(7):505–516

    Article  CAS  Google Scholar 

  • Ong W-Y, Shalini S-M, Costantino L (2014) Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr Med Chem 21(37):4247–4256

    Article  CAS  PubMed  Google Scholar 

  • Pardeshi CV, Belgamwar VS (2013) Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv 10(7):957–972

    Article  CAS  PubMed  Google Scholar 

  • Pardeshi CV, Belgamwar VS (2018) N, N, N-trimethyl chitosan modified flaxseed oil based mucoadhesive neuronanoemulsions for direct nose to brain drug delivery. Int J Biol Macromol 120:2560–2571

    Article  CAS  PubMed  Google Scholar 

  • Patel S et al (2011) Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target 19(6):468–474

    Article  CAS  PubMed  Google Scholar 

  • Piazza J et al (2014) Haloperidol-loaded intranasally administered lectin functionalized poly (ethylene glycol)–block-poly (D, L)-lactic-co-glycolic acid (PEG–PLGA) nanoparticles for the treatment of schizophrenia. Eur J Pharm Biopharm 87(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Piazzini V et al (2019) Chitosan coated human serum albumin nanoparticles: a promising strategy for nose-to-brain drug delivery. Int J Biol Macromol 129:267–280

    Article  CAS  PubMed  Google Scholar 

  • Pillai AM et al (2020) Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct:128,107

    Google Scholar 

  • Quintana DS et al (2016) The promise and pitfalls of intranasally administering psychopharmacological agents for the treatment of psychiatric disorders. Mol Psychiatry 21(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Rahdar A et al (2019a) Effect of tocopherol on the properties of Pluronic F127 microemulsions: physico-chemical characterization and in vivo toxicity. J Mol Liq 277:624–630

    Article  CAS  Google Scholar 

  • Rahdar A et al (2019b) Synthesis and characterization of highly efficacious Fe-doped ceria nanoparticles for cytotoxic and antifungal activity. Ceram Int 45(6):7950–7955

    Article  CAS  Google Scholar 

  • Rahdar A et al (2020a) The synthesis of methotrexate-loaded F127 microemulsions and their in vivo toxicity in a rat model. J Mol Liq:113449

    Google Scholar 

  • Rahdar A et al (2020b) Synthesis, characterization, and intraperitoneal biochemical studies of zinc oxide nanoparticles in Rattus norvegicus. Appl Phys A 126:1–9

    CAS  Google Scholar 

  • Rahdar A et al (2020c) Behavioral effects of zinc oxide nanoparticles on the brain of rats. Inorg Chem Commun 119:108,131

    Article  CAS  Google Scholar 

  • Rahdar A et al (2020d) Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polymer Bull:1–22

    Google Scholar 

  • Rahdar A et al (2020e) Gum-based cerium oxide nanoparticles for antimicrobial assay. Appl Phys A 126:1–9

    Article  CAS  Google Scholar 

  • Rahdar A et al (2020f) Deferasirox-loaded pluronic nanomicelles: synthesis, characterization, in vitro and in vivo studies. J Mol Liq:114,605

    Google Scholar 

  • Rassu G et al (2017) Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces 152:296–301

    Article  CAS  PubMed  Google Scholar 

  • Sabir F, Ismail R, Csoka I (2020) Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook. Drug Discov Today 25(1):185–194

    Article  CAS  PubMed  Google Scholar 

  • Salade L et al (2017) Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia. Int J Nanomedicine 12:8531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem LH et al (2020) Coated lipidic nanoparticles as a new strategy for enhancing nose-to-brain delivery of a hydrophilic drug molecule. J Pharm Sci

    Google Scholar 

  • Samaridou E, Alonso MJ (2018) Nose-to-brain peptide delivery–the potential of nanotechnology. Bioorg Med Chem 26(10):2888–2905

    Article  CAS  PubMed  Google Scholar 

  • Samaridou E et al (2020) Nose-to-brain delivery of enveloped RNA-cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials 230:119657

    Article  CAS  PubMed  Google Scholar 

  • Saravani R et al (2020) Newly crocin-coated magnetite nanoparticles induce apoptosis and decrease VEGF expression in breast carcinoma cells. J Drug Delivery Sci Technol 60:101,987

    Article  CAS  Google Scholar 

  • Sawant RR, Torchilin VP (2010) Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Mol Membr Biol 27(7):232–246

    Article  CAS  PubMed  Google Scholar 

  • Sayadi K et al (2020) Atorvastatin-loaded SBA-16 nanostructures: synthesis, physical characterization, and biochemical alterations in hyperlipidemic rats. J Mol Struct 1202:127,296

    Article  CAS  Google Scholar 

  • Sekerdag E et al (2017) A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles. J Control Release 261:187–198

    Article  CAS  PubMed  Google Scholar 

  • Shamarekh KS et al (2020) Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: in-vitro and in-vivo assessment. J Drug Delivery Sci Technol:101,724

    Google Scholar 

  • Sivasankarapillai VS et al (2020a) Cancer theranostic applications of MXene nanomaterials: recent updates. Nano-Struct Nano-Objects 22:100,457

    Article  CAS  Google Scholar 

  • Sivasankarapillai VS et al (2020b) On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: possible strategies and first challenges. Nanomaterials 10(5):852

    Article  CAS  PubMed Central  Google Scholar 

  • Sivasankarapillai V et al Progress in natural polymer engineered biomaterials for transdermal drug delivery systems. Mater Today Chem 19:100,382

    Google Scholar 

  • Sonvico F et al (2018) Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics 10(1):34

    Article  PubMed Central  CAS  Google Scholar 

  • Sosnik A, das Neves J, Sarmento B (2014) Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci 39(12):2030–2075

    Article  CAS  Google Scholar 

  • Sousa F, Castro P (2016) Cell-based in vitro models for nasal permeability studies. In: Concepts and models for drug permeability studies. Elsevier, pp 83–100

    Chapter  Google Scholar 

  • Stevens J et al (2009) A new minimal-stress freely-moving rat model for preclinical studies on intranasal administration of CNS drugs. Pharm Res 26(8):1911–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stützle M et al (2015) Nose-to-brain delivery of insulin for Alzheimer’s disease. ADMET and DMPK 3(3):190–202

    Article  Google Scholar 

  • Tafaghodi M et al (2004) Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. Int J Pharm 280(1-2):125–135

    Article  CAS  PubMed  Google Scholar 

  • Taimoory SM et al (2018) The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J Mol Liq 265:96–104

    Article  CAS  Google Scholar 

  • Taki H et al (2012) Intranasal delivery of camptothecin-loaded tat-modified nanomicells for treatment of intracranial brain tumors. Pharmaceuticals 5(10):1092–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torkzadeh-Mahani M et al (2020) A combined theoretical and experimental study to improve the thermal stability of recombinant D-lactate dehydrogenase immobilized on a novel superparamagnetic Fe3O4NPs@ metal–organic framework. Appl Organomet Chem 34(5):e5581

    Article  CAS  Google Scholar 

  • Ugwoke MI et al (2005) Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev 57(11):1640–1665

    Article  CAS  PubMed  Google Scholar 

  • Ullah I et al (2020) Nose-to-brain delivery of cancer-targeting paclitaxel-loaded nanoparticles potentiates antitumor effects in malignant glioblastoma. Mol Pharm 17(4):1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay S et al (2011) Intranasal drug delivery system-a glimpse to become maestro. J Appl Pharm Sci 1(03):34–44

    Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Van Den Berg MP et al (2003) Hydroxocobalamin uptake into the cerebrospinal fluid after nasal and intravenous delivery in rats and humans. J Drug Target 11(6):325–331

    Article  PubMed  CAS  Google Scholar 

  • Van Den Berg MP et al (2004) Uptake of melatonin into the cerebrospinal fluid after nasal and intravenous delivery: studies in rats and comparison with a human study. Pharm Res 21(5):799–802

    Article  PubMed  Google Scholar 

  • Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70(3):735–740

    Article  CAS  PubMed  Google Scholar 

  • Warnken ZN et al (2016) Formulation and device design to increase nose to brain drug delivery. J Drug Delivery Sci Technol 35:213–222

    Article  CAS  Google Scholar 

  • Wu H et al (2012) A novel small Odorranalectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid-β25–35-treated rats following intranasal administration. Eur J Pharm Biopharm 80(2):368–378

    Article  CAS  PubMed  Google Scholar 

  • Xia H et al (2011) Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 32(36):9888–9898

    Article  CAS  PubMed  Google Scholar 

  • Yadav S et al (2015) Comparative biodistribution and pharmacokinetic analysis of cyclosporine-a in the brain upon intranasal or intravenous administration in an oil-in-water nanoemulsion formulation. Mol Pharm 12(5):1523–1533

    Article  CAS  PubMed  Google Scholar 

  • Yang T et al (2004) Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm Res 21(7):1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Yasir M, Sara UVS (2014) Solid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B 4(6):454–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Ying, W., The nose may help the brain: intranasal drug delivery for treating neurological diseases. 2008.

    Google Scholar 

  • Yokoyama M (2005) Drug targeting with nano-sized carrier systems. J Artif Organs 8(2):77–84

    Article  CAS  PubMed  Google Scholar 

  • Zaki N et al (2006) Rapid-onset intranasal delivery of metoclopramide hydrochloride: Part I. Influence of formulation variables on drug absorption in anesthetized rats. Int J Pharm 327(1-2):89–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang C et al (2014) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461(1-2):192–202

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y-Z et al (2014) Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomed Nanotechnol Biol Med 10(4):755–764

    Article  CAS  Google Scholar 

  • Zhao Y-Z et al (2016) Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release 224:165–175

    Article  CAS  PubMed  Google Scholar 

  • Zheng X et al (2015) Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res 32(12):3837–3849

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Rahdar or Nikhil Bhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabir, F. et al. (2022). Functionalized Nanoparticles in Drug Delivery: Strategies to Enhance Direct Nose-to-Brain Drug Delivery via Integrated Nerve Pathways. In: Thakur, A., Thakur, P., Khurana, S.P. (eds) Synthesis and Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-16-6819-7_21

Download citation

Publish with us

Policies and ethics