Skip to main content

Ex-vivo Evaluation of Newly Formed Bone After Lumbar Interbody Fusion Surgery Using X-ray Micro Computed Tomography

  • Conference paper
  • First Online:
Medical Imaging and Computer-Aided Diagnosis (MICAD 2022)

Abstract

Many novel biomaterials are recently investigated for use in spinal fusion surgery, especially in lumbar interbody fusion. The X-ray microCT as a tool is widely used for evaluating how successfully those biomaterials can perform a vertebral fusion. However, the current methodologies of microCT image assessment are based on visual evaluation by the operator. In this paper, we propose a methodology for how such biomaterials can be investigated in pre-clinical studies by investigating fused vertebrae morphology. We utilized microCT scans of pigs’ fused vertebrae to develop a fully automatic approach, which can characterize the morphometry of the bone in the fused region. A surface mesh model was created to extract the newly formed bone tissue between fused vertebrae in the microCT data. Extracted bone tissue was consequently evaluated according to the selected morphometric parameters. Characterization of the newly formed bone properties in the intervertebral area can be utilized to evaluate the osteogenesis function of implants used in lumbar interbody fusion surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Trabecular in Growth Ratio (TIGR) acquired from [14].

References

  1. Fujibayashi, S., et al.: A novel synthetic material for spinal fusion: a prospective clinical trial of porous bioactive titanium metal for lumbar interbody fusion. European Spine Journal, 20(9), 1486–1495 (2011), https://doi.org/https://doi.org/10.1007/s00586-011-1728-3.

    Article  Google Scholar 

  2. Stastny, P., et al.: Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro. Materials Science and Engineering: C, 100, 544–553 (2019), https://doi.org/https://doi.org/10.1016/j.msec.2019.03.027.

    Article  Google Scholar 

  3. Chen, L., et al.: Lumbar interbody fusion with porous biphasic calcium phosphate enhanced by recombinant bone morphogenetic protein-2/silk fibroin sustained-released microsphere: an experimental study on sheep model. Journal of Materials Science: Materials in Medicine, 26(3), (2015), https://doi.org/10.1007/s10856-015-5463-x.

  4. Lo, W.-C., et al.: Understanding the Future Prospects of Synergizing Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery with Ceramics and Regenerative Cellular Therapies. International Journal of Molecular Sciences, 22(7), (2021), https://doi.org/10.3390/ijms22073638.

  5. Schmidt, C., et al.: Precision and Accuracy of Peripheral Quantitative Computed Tomography (pQCT) in the Mouse Skeleton Compared With Histology and Microcomputed Tomography (μCT). Journal of Bone and Mineral Research, 18(8), 1486–1496 (2003), https://doi.org/10.1359/jbmr.2003.18.8.1486.

    Article  Google Scholar 

  6. He, T., et al.: A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model. Scientific Reports, 7(1), (2017), https://doi.org/10.1038/s41598-017-16465-4.

  7. Lyu, H-Z., et al.: Correlation between two-dimensional micro-CT and histomorphometry for assessment of the implant osseointegration in rabbit tibia model. Biomaterials Research, 25(1), (2021), https://doi.org/10.1186/s40824-021-00213-x.

  8. Kitchen, D., et al.: Fusion Assessment by MRI in Comparison With CT in Anterior Lumbar Interbody Fusion: A Prospective Study. Global Spine Journal, 8(6), 586–592 (2018), https://doi.org/https://doi.org/10.1177/2192568218757483.

    Article  Google Scholar 

  9. Sethi, A., et al.: Radiographic and CT Evaluation of Recombinant Human Bone Morphogenetic Protein-2–Assisted Spinal Interbody Fusion. American Journal of Roentgenology, 197(1), 128–133 (2011), https://doi.org/https://doi.org/10.2214/AJR.10.5484.

    Article  Google Scholar 

  10. Brans, B., et al.: Assessment of bone graft incorporation by 18 F-fluoride positron-emission tomography/computed tomography in patients with persisting symptoms after posterior lumbar interbody fusion. EJNMMI Research, 2(1), (2012), https://doi.org/10.1186/2191-219X-2-42.

  11. Gadomski, B. Cet al.: Evaluation of lumbar spinal fusion utilizing recombinant human platelet derived growth factor‐B chain homodimer ( rhPDGF‐BB ) combined with a bovine collagen/β‐tricalcium phosphate ( β‐TCP ) matrix in an ovine model. JOR SPINE, 4(3), (2021), https://doi.org/10.1002/jsp2.1166.

  12. Tan, G. H., et al.: CT-based classification of long spinal allograft fusion. European Spine Journal, 16(11), 1875–1881 (2007), https://doi.org/https://doi.org/10.1007/s00586-007-0376-0.

    Article  Google Scholar 

  13. Bridwell, K. H., et al.: Anterior Fresh Frozen Structural Allografts in the Thoracic and Lumbar Spine. Spine, 20(12), 1410–1418 (1995), https://doi.org/https://doi.org/10.1097/00007632-199506020-00014.

    Article  Google Scholar 

  14. Laznovsky, J., et al.: Automatic 3D analysis of the ex-vivo porcine lumbar interbody fusion based on X-ray micro computed tomography data. Computers in Biology and Medicine 145, (2022), https://doi.org/10.1016/j.compbiomed.2022.105438.

  15. Gupta, A., et al.: Bone graft substitutes for spine fusion: A brief review. World Journal of Orthopedics, 6(6), (2015), https://doi.org/10.5312/wjo.v6.i6.449.

  16. Jiang, Y., et al.: Application of micro-ct assessment of 3-d bone microstructure in preclinical and clinical studies. Journal of Bone and Mineral Metabolism, 23(S1), 122–131 (2005), https://doi.org/https://doi.org/10.1007/BF03026336.

    Article  Google Scholar 

  17. Boerckel, J. D., et al.: Microcomputed tomography: approaches and applications in bioengineering, 5(6), (2014), https://doi.org/10.1186/scrt534.

  18. Bouxsein, M. L., et al.: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research, 25(7), 1468–1486 (2010), https://doi.org/https://doi.org/10.1002/jbmr.141.

    Article  Google Scholar 

  19. Odgaard, A., Gundersen, H. J. G Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone, 14(2), 173–182 (1993), https://doi.org/https://doi.org/10.1016/8756-3282(93)90245-6.

    Article  Google Scholar 

  20. Odgaard, A. Three-dimensional methods for quantification of cancellous bone architecture. Bone, 20(4), 315–328 (1997), https://doi.org/https://doi.org/10.1016/S8756-3282(97)00007-0.

    Article  Google Scholar 

  21. Vojtova, L., et al.: Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB® Protein:In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation. Biomedicines, 9(6), (2021), https://doi.org/10.3390/biomedicines9060590.

  22. Krticka, M., et al.: Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2. Biomedicines, 9(7), (2021), https://doi.org/10.3390/biomedicines9070733.

  23. Domander, R., et al.: BoneJ2 - refactoring established research software. Wellcome Open Research, 6, (2021), https://doi.org/10.12688/wellcomeopenres.16619.2.

  24. Parkinson, I. H., et al.: Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis, 31(2), 160–164 (2008), https://doi.org/https://doi.org/10.1007/BF03178592.

    Article  Google Scholar 

Download references

Acknowledgements

Grant CEITEC VUT-K-22-7761 is realised within the project Quality Internal Grants of BUT (KInG BUT), Reg. No. CZ.02.2.69/0.0/0.0/19_073/0016948, which is financed from the OP RDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Laznovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laznovsky, J., Brinek, A., Zikmund, T., Kaiser, J. (2023). Ex-vivo Evaluation of Newly Formed Bone After Lumbar Interbody Fusion Surgery Using X-ray Micro Computed Tomography. In: Su, R., Zhang, Y., Liu, H., F Frangi, A. (eds) Medical Imaging and Computer-Aided Diagnosis. MICAD 2022. Lecture Notes in Electrical Engineering, vol 810. Springer, Singapore. https://doi.org/10.1007/978-981-16-6775-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6775-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6774-9

  • Online ISBN: 978-981-16-6775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics