Skip to main content

Decades of Cultivar Development: A Reconciliation of Maize and Bean Breeding Projects and Their Impacts on Food, Nutrition Security, and Income of Smallholder Farmers in Sub-Saharan Africa

Part of the Sustainability Sciences in Asia and Africa book series (SAFS)

Abstract

The past decades have seen the implementation of several multi-national maize and common bean cultivar development projects in sub-Saharan Africa (SSA). However, the impacts of these projects on income generation and food and nutrition security have not been adequately interrogated and documented. This chapter provides a synthesis of some of the past and current multinational maize and common bean breeding projects in terms of international distribution, cultivars released, cultivar adoption rates, and impacts on food, nutrition, and income security in SSA. The information used in this chapter is from reliable published journal articles, institutional reports, and authors’ knowledge of cultivar development and agricultural systems in SSA. Good progress has been made in the past decades in terms of the number of cultivars released with huge yield advantages over unimproved landraces, good tolerance to biotic and abiotic factors. Millions of farmers were moved out of poverty and cushioned from hunger after adopting the improved cultivars. Biofortified maize and bean cultivars with enhanced content of ion, zinc, protein, and provitamin A are proving to be effective solution for malnutrition, which is widespread in SSA. However, more promotional efforts are still needed to increase the adoption of improved cultivars by farmers.

Keywords

  • Cultivar development
  • Maize
  • Common bean
  • Impacts
  • Food security
  • Multinational projects

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-6771-8_1
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-6771-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2

References

  • Abate T, Fisher M, Abdoulaye T, Kassie GT, Lunduka R, Marenya P, Asnake W (2017) Characteristics of maize cultivars in Africa: how modern are they and how many do smallholder farmers grow? Agricult Food Secur 6:30

    CrossRef  Google Scholar 

  • Ahmed MH, Geleta KM, Tazeze A, Andualem E (2017) The impact of improved maize varieties on farm productivity and wellbeing: evidence from the East Hararghe Zone of Ethiopia. Dev Stud Res 4:9–21

    CrossRef  Google Scholar 

  • Akpo E, Ojiewo CO, Omoigui LO, Rubyogo JC, Varshney RK (2020) Sowing legume seeds, reaping: cash a renaissance within communities in sub-Saharan Africa. Springer, Singapore. https://doi.org/10.1007/978-981-15-0845-5_9

    CrossRef  Google Scholar 

  • Alene AD, Menkir A, Ajala S, Badu-Apraku B, Olanrewaju A, Manyong V, Ndiaye A (2009) The economic and poverty impacts of maize research in West and Central Africa. Agric Econ 40:535–550

    CrossRef  Google Scholar 

  • Andersson M, Saltzman A, Singh Virk P, Pfeiffer W (2017) Progress update: Crop development of biofortified staple food crops under HarvestPlus. Afr J Food Agric Nutr Dev 17:11905–11935

    CAS  Google Scholar 

  • Asfaw S, Shiferaw B, Simtowe F, Lipper L (2012) Impact of modern agricultural technologies on smallholder welfare: evidence from Tanzania and Ethiopia. Food Policy 37:283–295

    CrossRef  Google Scholar 

  • Badu-Apraku B, Talabi OA, Garcia-Oliveira AL, Gedil M (2018) IITA scientists develop multiple stress tolerant maize hybrids with high levels of Pro-Vitamin A. IITA News 2463

    Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants, vol vol 1. Stemma Press, Woodbury, MN

    Google Scholar 

  • Boddupalli P, Suresh LM, Mwatuni F, Beyene Y, Makumbi D, Gowda M et al (2020) Maize lethal necrosis (MLN): efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa. Virus Res 282:197943

    CAS  CrossRef  Google Scholar 

  • Buruchara R, Chirwa R, Sperling I, Mukankusi C, Rubyogo JC, Muthoni R, Abang MM (2011) Development and delivery of bean varieties in africa: the pan- africa bean research alliance (pabra) model. Afr Crop Sci J 19:227–245

    Google Scholar 

  • Cairns JE, Sonder K, Zaidi PH, Verhulst N, Mahuku G, Babu R et al (2012) Chapter one—maize production in a changing climate: impacts, adaptation, and mitigation strategies. In: Sparks DL (ed) Advances in agronomy, vol Vol. 114. Academic Press, pp 1–58

    Google Scholar 

  • Chomba E, Westcott CM, Westcott JE, Mpabalwani EM, Krebs NF, Patinkin ZW et al (2015) Zinc absorption from biofortified maize meets the requirements of young rural Zambian children. J Nutr 145(3):514–519. https://doi.org/10.3945/jn.114.204933

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • CIAT (2013) A bean revolution in sub-Saharan Africa. https://www.ard-europe.org/fileadmin/SITE_MASTER/content/eiard/Documents/Impact_case_studies_2013/CIAT_-_A_bean_revolution_in_sub-Saharan_Africa.pdf

  • CIMMYT (2015) Drought tolerant maize for Africa. https://www.cimmyt.org/projects/drought-tolerant-maize-for-africa-dtma/. Accessed 21 May 2021

  • CIMMYT (2016) Drought-tolerant maize a boon to farmers in Zambia hit by El Niño. https://www.cimmyt.org/news/drought-tolerant-maize-a-boon-to-farmers-in-zambia-hit-by-el-ninno/. Accessed 10 July 2021

  • CIMMYT (2018) Nutritious vitamin A orange maize boosts health and livelihoods in Zimbabwe—CIMMYT. https://www.cimmyt.org/news/nutritious-vitamin-a-orange-maize-boosts-health-and-livelihoods-in-zimbabwe/. Accessed 10 July 2021

  • CIMMYT (2020a) Stress tolerant maize for Africa. STMA Brief. https://stma.cimmyt.org/latest-stma-bulletin-is-out-3/. Accessed 25 May 2021

  • CIMMYT (2020b) Farmers flock towards nutritious, orange maize—CIMMYT. https://www.cimmyt.org/news/farmers-flock-towards-nutritious-orange-maize/. Accessed 10 July 2021

  • CIMMYT (2021) Projects. https://www.cimmyt.org/projects/. Accessed 25 May 2021

  • Danso-Abbeam G, Bosiako JA, Ehiakpor DS, Mabe FN (2017) Adoption of improved maize variety among farm households in the northern region of Ghana. Cogent Econom Finance 5:1416896

    CrossRef  Google Scholar 

  • Eriksson D, Akoroda M, Azmach G, Labuschagne M, Mahungu N, Ortiz R (2018) Measuring the impact of plant breeding on sub-Saharan African staple crops. Outlook Agricult 47:163–180

    CrossRef  Google Scholar 

  • Fisher M, Abate T, Lunduka RW, Asnake W, Alemayehu Y, Madulu RB (2015) Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: determinants of adoption in eastern and southern Africa. Clim Chang 133(2):283–299

    CrossRef  Google Scholar 

  • Gabre-Madhin EZ, Haggblade S (2004) Successes in African agriculture: results of an expert survey. World Dev 32:745–766

    CrossRef  Google Scholar 

  • Gannon B, Kaliwile C, Arscott SA, Schmaelzle S, Chileshe J, Kalungwana N et al (2014) Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial. Am J Clin Nutr 100(6):1541–1550. https://doi.org/10.3945/ajcn.114.087379

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Houeninvo GH, Célestin Quenum CV, Nonvide GMA (2020) Impact of improved maize variety adoption on smallholder farmers’ welfare in Benin. Econ Innov New Technol 29:831–846

    CrossRef  Google Scholar 

  • Johnson NL, Pachico D, Wortmann CS (2003) The impact of CIAT’s genetic improvement research on beans. In: Evenson RE, Gollin D (eds) Crop variety improvement and its effect on productivity: the impact of International Agricultural Research. CAB International, Wallingford, pp 257–274

    CrossRef  Google Scholar 

  • Kalyebara R, Andima D, Xavery P et al (2007) Impact of improved bean R&D technologies in sub-Saharan Africa—evidence from 7 countries. Occasional Publication Series, Pan African Bean Research Alliance, CIAT Africa Region, Kampala

    Google Scholar 

  • Katungi E, Farrow A, Chianu J, Sperling L, Beebe S (2009) Common bean in Eastern and Southern Africa: a situation and outlook analysis. http://www.icrisat.org/what-we-do/impi/projects/tl2-publications/regional-situation-outlook-reports/rso-common-bean-esa.pdf

  • Katungi EM, Larochelle C, Mugabo JR et al (2019) The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda. Food Security 10:61–79

    CrossRef  Google Scholar 

  • Khonje M, Manda J, Alene AD, Kassie M (2015) Analysis of adoption and impacts of improved maize varieties in eastern Zambia. World Dev 66:695–706

    CrossRef  Google Scholar 

  • Kondwakwenda AK (2018) Provitamin A maize biofortification in sub-Saharan Africa. Maydica J 63:3. https://journals-crea.4science.it/index.php/maydica/article/view/1740

    Google Scholar 

  • Krishna VV, Lantican M, Prasanna B, Pixley K, Abdoulaye T, Menkir A et al (2021) Impacts of CGIAR maize improvement in sub-Saharan Africa, 1995–2015. CIMMYT

    Google Scholar 

  • Larochelle C, Alwang J, Norton G, Katungi E, Labarta R (2015) Impacts of improved bean varieties on poverty and food security in Uganda and Rwanda. In: Walker TS, Alwang J (eds) Crop improvement, adoption and impact of improved varieties in food crops in sub-Saharan Africa. CAB International, Oxfordshire, pp 314–337

    CrossRef  Google Scholar 

  • Letaa E, Kabungo C, Katungi E, Ojara M, Ndunguru A (2015) Farm level adoption and spatial diffusion of improved common bean varieties in southern highlands of Tanzania. Afr Crop Sci J 23:261–277

    Google Scholar 

  • Lividini K, Fiedler JL (2015) Assessing the promise of biofortification: A case study of high provitamin A maize in Zambia. Food Policy 54:65–77. https://doi.org/10.1016/j.foodpol.2015.04.007

    CrossRef  Google Scholar 

  • Lunduka R, Ricker-Gilbert J, Fisher M (2013) What are the farm-level impacts of Malawi’s farm input subsidy program? A critical review. Agric Econ 44:563–579

    CrossRef  Google Scholar 

  • Mabeya J, Kamanda J, Onyango P et al (2020) Transforming Africa’s agriculture through enhancing commercialization of high iron beans research products: the case of high iron beans technology. FARA Dissemination Notes FDN 44, pp 1–8

    Google Scholar 

  • Martey E, Etwire PM, Kuwornu JKM (2020) Economic impacts of smallholder farmers’ adoption of drought-tolerant maize varieties. Land Use Policy 94:104524

    CrossRef  Google Scholar 

  • Masuka B, Atlin GN, Olsen M, Magorokosho C, Labuschagne M, Crossa J et al (2017) Gains in maize genetic improvement in eastern and southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci 57(1):168–179

    CrossRef  Google Scholar 

  • Mukankusi C, Bodo R, Nkalubo S et al (2019) Genomics, genetics and breeding of common bean in Africa: a review of tropical legume project. Plant Breed 138(4):401–414

    CrossRef  Google Scholar 

  • Mulambu J, Andersson M, Palenberg M, Pfeiffer W, Saltzman A, Birol E, Oparinde A, Boy E, Herrington C, Asare-Marfo D, Lubobo A, Mukankusi C, Nkalubo S (2017) Iron beans in Rwanda: Crop development and delivery experience. Afr J Food Agric Nutr Dev 17(2):12026–12050

    CAS  Google Scholar 

  • Mutari B, Sibiya J, Nchanji E, Simango K, Gasura E (2021) Farmers’ Perceptions of Navy Bean (Phaseolus Vulgaris L.) production constraints, preferred traits, farming systems and their implications on bean breeding: a case study from south east Lowveld Region of Zimbabwe. J Ethnobiol Ethnomed 17:13, 19

    CrossRef  Google Scholar 

  • Muthoni RA, Andrade A (2015a) The performance of bean improvement programmes in sub-Saharan Africa from the perspectives of varietal output and adoption. In: Walker TS, Alwang J (eds) Crop improvement, adoption and impact of improved varieties in food crops in sub-Saharan Africa. CAB International, Oxfordshire, pp 148–162

    CrossRef  Google Scholar 

  • Muthoni AR, Andrade R (2015b) The performance of bean improvement programmes in sub-Saharan Africa from the perspectives of varietal output and adoption. In: Thomas S, Walker JA (eds) Crop improvement, adoption, and impact of improved varieties in food crops in sub-Saharan Africa. CAB International, Boston, pp 148–163

    CrossRef  Google Scholar 

  • Muthoni R, Barungi M, Rubyogo JC (2007) Bean technology development and promotion in the Pan Africa Bean Research Alliance from 2003 to 2007. M&E and Performance Measurement Manuscript, CIAT, Kampala

    Google Scholar 

  • Nchanji EB, Lutomia CK, Chirwa R, Onyango P (2021) Immediate impacts of Covid-19 pandemic on bean value chain in selected countries in sub-Saharan Africa. Agric Syst 188:103034

    CrossRef  Google Scholar 

  • PABRA (2020a) How beans are beating hunger in Burundi. Summary. Pan-Africa Bean Research Alliance (PABRA); International Center for Tropical Agriculture (CIAT), p 1. https://hdl.handle.net/10568/109120

    Google Scholar 

  • PABRA (2020b) High-yielding Climate-resilient beans improve food security and kick-start business in Zimbabwe. Summary. Pan-Africa Bean Research Alliance (PABRA); International Center for Tropical Agriculture (CIAT), p 3. https://hdl.handle.net/10568/109123

    Google Scholar 

  • Palmer AC, Healy K, Barffour MA, Siamusantu W, Chileshe J, Schulze KJ et al (2016) Provitamin A carotenoid–biofortified maize consumption increases pupillary responsiveness among Zambian children in a randomized controlled trial. J Nutr 146(12):2551–2558. https://doi.org/10.3945/jn.116.239202

    CAS  CrossRef  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) Biofortification: breeding micronutrient-dense crops. In: Breeding major food staples. Blackwell Scientific, Oxford, pp 61–91

    CrossRef  Google Scholar 

  • Rovere RL, Abdoulaye T, Kostandini G, Guo Z, Mwangi W, MacRobert J, Dixon J (2014) Economic, production, and poverty impacts of investing in maize tolerant to drought in Africa: an ex-ante assessment. J Dev Areas 48:199–225. https://doi.org/10.1353/jda.2014.0016

    CrossRef  Google Scholar 

  • Rubyogo JC, Sperling L, Assefa T (2007) A new approach for facilitating farmers access to bean seed. https://edepot.wur.nl/57914

  • Simpungwe E, Dhliwayo T, Palenberg M, Taleon V, Birol E, Oparinde A, Saltzman A, Diressie MT (2017) Orange maize in Zambia: crop development and delivery experience. Afr J Food Agric Nutr Dev 17:11905–11935

    Google Scholar 

  • Teshale A, Rubyogo JC, Sperling L et al (2006) Creating partnerships for enhanced impact: bean variety delivery in Ethiopia. J Crop Sci Soc Ethiopia 12:27–30

    Google Scholar 

  • Ugen M, Karanja D, Birachi E, Katabalwa C, Ouma J, Mutuku R (2017) Pre-cooked beans for improving food and nutrition security and income generation in Kenya and Uganda – final technical report. Available at http://hdl.handle.net/10625/56860. Accessed 20 Apr 2021

  • Vaiknoras K, Larochelle C (2021) The impact of iron-biofortified bean adoption on bean productivity,consumption, purchases and sales. World Dev 139:105260

    CrossRef  Google Scholar 

  • Varshney RK, Ojiewo C, Monyo E (2019) A decade of Tropical Legumes projects: development and adoption of improved varieties, creation of market-demand to benefit smallholder farmers and empowerment of national programmes in sub-Saharan Africa and South Asia. Plant Breed 138:379–388

    CrossRef  Google Scholar 

  • Walker T, Alene A, Ndjeunga J, Labarta R, Yigezu Y, Diagne A, …, Pandey S (2014) Measuring the effectiveness of crop improvement research in sub-Saharan Africa from the perspectives of varietal output, adoption, and change: 20 crops, 30 countries, and 1150 cultivars in farmers’ fields (Report of the Standing Panel on Impact Assessment (SPIA)). CGIAR Independent Science and Partnership Council (ISPC) Secretariat, Rome. Retrieved from Rome, Italy

    Google Scholar 

  • Wesseler J, Smart RD, Thomson J, Zilberman D (2017) Foregone benefits of important food crop improvements in sub-Saharan Africa. PLoS One 12(7):e0181353

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kondwakwenda, A. et al. (2022). Decades of Cultivar Development: A Reconciliation of Maize and Bean Breeding Projects and Their Impacts on Food, Nutrition Security, and Income of Smallholder Farmers in Sub-Saharan Africa. In: Mupambwa, H.A., Nciizah, A.D., Nyambo, P., Muchara, B., Gabriel, N.N. (eds) Food Security for African Smallholder Farmers. Sustainability Sciences in Asia and Africa(). Springer, Singapore. https://doi.org/10.1007/978-981-16-6771-8_1

Download citation