Skip to main content

Liquid Gold: Harnessing the Potential of Digestate to Enhance Smallholder Farmer Food Security and Livelihood

  • Chapter
  • First Online:
Food Security for African Smallholder Farmers

Abstract

Smallholder (SH) farming systems drive many economies in Africa and are one of the main sources of food and income to the poorest in both urban and rural areas. Improvements of the farming system is imperative to ensure food security and poverty reduction. A holistic SH farming approach that promotes resource recycling will ensure sustainability and productivity of SH farms. Anaerobic digestion (AD) is important to a holistic SH farming system. Anaerobic digestion aids in waste management and results in the generation of biogas as well as a nutrient-rich digestate. The value of the generated biogas has been widely publicised; however, the importance of the produced digestate is less known. This chapter aims at revealing the myriad of applications of digestate that are relevant to SH farming systems. These applications include its use as an organic fertilizer, in seed priming, as irrigation water, as a biopesticide, in aquaculture and livestock management as well as in several bioprocesses. Simple digestate post-treatment methods will also be highlighted. Overall, this chapter is aimed at improving understanding of the potential of digestate to promote its utilisation, together with the generated biogas, in a holistic farming approach thereby maximising benefits associated with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Seadi T, Drosg B, Fuchs W et al (2013) Biogas digestate quality and utilization. In: Wellinger A, Murphy J, Baxter D (eds) The biogas handbook: science, production and applications. Woodhead Publishing Ltd., Cambridge, pp 267–301

    Google Scholar 

  • Alburquerque JA, De Fuente C, Campoy M, Carrasco L, Nájera I, Baixauli C, Caravaca F, Roldán A, Cegarra J, Bernal MP (2012a) Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur J Agron 43:119–128

    Google Scholar 

  • Alburquerque JA, de la Fuente C, Ferrer-Costa A, Carrasco L, Cegarra J, Abad M, Bernal MP (2012b) Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy 40:181–189

    CAS  Google Scholar 

  • Askri A, Laville P, Trémier A, Houot S (2016) Influence of origin and post-treatment on greenhouse gas emissions after anaerobic digestate application to soil. Waste Biomass Valoriz 7(2):293–306

    CAS  Google Scholar 

  • Aso SN (2020) Digestate: the coproduct of biofuel production in a circular economy, and new results for cassava peeling residue digestate. In: Renewable energy. IntechOpen, London

    Google Scholar 

  • Avery LM, Yongabi K, Tumwesige V, Strachan N, Goude PJ (2014) Potential for pathogen reduction in anaerobic digestion and biogas generation in sub-Saharan Africa. Biomass Bioenergy 70:112–124

    Google Scholar 

  • Ayre JM, Moheimani NR, Borowitzka MA (2017) Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res 24:218–226

    Google Scholar 

  • Bachmann S, Uptmoor R, Eichler-Löbermann B (2016) Phosphorus distribution and availability in untreated and mechanically separated biogas digestates. Sci Agric 73(1):9–17

    CAS  Google Scholar 

  • Bandte M, Schleusner Y, Heiermann M, Plöchl M, Büttner C (2013) Viability of plant-pathogenic fungi reduced by anaerobic digestion. Bioenergy Res 6(3):966–973. https://doi.org/10.1007/s12155-013-9326-3

    Article  Google Scholar 

  • Barduca L, Wentzel S, Schmidt R, Malagoli M, Joergensen RG (2021) Mineralisation of distinct biogas digestate qualities directly after application to soil. Biol Fertil Soils 57(2):235–243

    CAS  Google Scholar 

  • Barłóg P, Hlisnikovský L, Kunzová E (2020) Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 10(3):379

    Google Scholar 

  • Barzee TJ, Edalati A, El-Mashad H, Wang D, Scow K, Zhang R (2019) Digestate biofertilizers support similar or higher tomato yields and quality than mineral fertilizer in a subsurface drip fertigation system. Front Sustain Food Syst 3:58

    Google Scholar 

  • Baştabak B, Koçar G (2020) A review of the biogas digestate in agricultural framework. J Mat Cycles Waste Manag 22:1318–1327

    Google Scholar 

  • Batchelor S, Scott N, McAllister J (2017) Guidelines to clean energy a practical guide for sub Saharan African municipalities

    Google Scholar 

  • Beggio G, Schievano A, Bonato T, Hennebert P, Pivato A (2019) Statistical analysis for the quality assessment of digestates from separately collected organic fraction of municipal solid waste (OFMSW) and agro-industrial feedstock . Should input feedstock to anaerobic digestion determine the legal status of digestate? Waste Manag 87:546–558

    CAS  PubMed  Google Scholar 

  • Busia K, Akong C (2017) The African mining vision: perspectives on mineral resource development in Africa. J Sustain Develop Law Policy 8(1):145–192

    Google Scholar 

  • Cerda A, Mejias L, Rodríguez P, Rodríguez A, Artola A, Font X, Teresa G, Sánchez A (2019) Valorisation of digestate from biowaste through solid-state fermentation to obtain value added bioproducts: a first approach. Bioresour Technol 271:409–416

    CAS  PubMed  Google Scholar 

  • Cesaro A, Belgiorno V (2015) Combined biogas and bioethanol production: opportunities and challenges for industrial application. Energies 8(8):8121–8144

    CAS  Google Scholar 

  • Cheteni, P. (2017). Sustainability development: biofuels in agriculture

    Google Scholar 

  • Clemens J, Morton RH (1999) Optimizing mineral nutrition for flower production in Heliconia “Golden torch” using response surface methodology. J Am Soc Hortic Sci 124:713–718

    CAS  Google Scholar 

  • Congilosi JL, Aga DS (2021) Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. J Hazard Mater 405:123634

    CAS  PubMed  Google Scholar 

  • Czekała W, Lewicki A, Pochwatka P, Czekała A, Wojcieszak D, Jóźwiakowski K, Waliszewska H (2020) Digestate management in polish farms as an element of the nutrient cycle. J Clean Prod 242:118454

    Google Scholar 

  • Department of Agriculture, Forestry and Fisheries (DAFF) (2018) Guidelines for registration of Digestate derived from abattoir waste used as a soil conditioner or amendment act no.36 of 1947. Department of Agriculture, Forestry and Fisheries (DAFF), Pretoria

    Google Scholar 

  • Drosg B, Fuchs W, Al Seadi T, Madsen M, Linke B (2015) Nutrient recovery by biogas digestate processing. IEA Bioenergy, Dublin, p 711. http://www.iea-biogas.net/files/daten-redaktion/download/Technical

    Google Scholar 

  • Farooq M, Usman M, Nadeem F, Rehman H, Wahid A, Basra SM, Siddique KH (2019) Seed priming in field crops: potential benefits, adoption and challenges. Crop Pasture Sci 70(9):731–771

    CAS  Google Scholar 

  • Feng H, Qu GF, Ning P, Xiong XF, Jia LJ, Shi YK, Zhang J (2011) The resource utilization of anaerobic fermentation residue. Procedia Environ Sci 11:1092–1099

    CAS  Google Scholar 

  • Frischmann, P. (2012). Enhancement and treatment of digestates from anaerobic digestion. A review of enhancement techniques, processing options and novel digestate products. WRAP, 1-122

    Google Scholar 

  • Fuchs W, Drosg B (2013) Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci Technol 67(9):1984–1993

    CAS  PubMed  Google Scholar 

  • Fuldauer LI, Parker BM, Yaman R, Borrion A (2018) Managing anaerobic digestate from food waste in the urban environment: evaluating the feasibility from an interdisciplinary perspective. J Clean Prod 185:929–940

    Google Scholar 

  • Gao T, Li X (2011) Using thermophilic anaerobic digestate effluent to replace freshwater for bioethanol production. Bioresour Technol 102(2):2126–2129

    CAS  PubMed  Google Scholar 

  • Garcia-Sánchez M, Garcia-Romera I, Cajthaml T, Tlustoš P, Száková J (2015) Changes in soil microbial community functionality and structure in a metal-polluted site: the effect of digestate and fly ash applications. J Environ Manag 162:63–73

    Google Scholar 

  • Głowacka A, Szostak B, Klebaniuk R (2020) Effect of biogas digestate and mineral fertilisation on the soil properties and yield and nutritional value of switchgrass forage. Agronomy 10(4):1–22

    Google Scholar 

  • Groot LD, Bogdanski A (2013) Bioslurry = brown gold? In: A review of scientific literature on the co-product of biogas production. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Guo M, Song W, Tian J (2020) Biochar-facilitated soil remediation: mechanisms and efficacy variations. Front Environ Sci 8:183

    Google Scholar 

  • Hagemann N, Spokas K, Schmidt HP, Kägi R, Böhler MA, Bucheli TD (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water 10(2):182

    Google Scholar 

  • Harris D, Breese WA, Rao JV, Kumar DK (2005) The improvement of crop yield in marginal environments using ‘on-farm’ seed priming: nodulation, nitrogen fixation, and disease resistance. Aust J Agric Res 56:1211–1218

    Google Scholar 

  • Helberg E (2019) Soil acidity and its impact on agriculture. FarmBiz 5(12):26

    Google Scholar 

  • Ho YB, Zakaria MP, Latif PA, Saari N (2013) Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresour Technol 131:476–484

    CAS  PubMed  Google Scholar 

  • Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues - friend or foe of soil fertility? Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2015.02.006

  • Islam MR, Rahman SME, Rahman MM, Oh DH, Ra CS (2010) The effects of biogas slurry on the production and quality of maize fodder. Turk J Agric For 34(1):91–99

    CAS  Google Scholar 

  • Jjagwe J, Komakech AJ, Karungi J, Amann A, Wanyama J, Lederer J (2019) Assessment of a cattle manure vermicomposting system using material flow analysis: a case study from Uganda. Sustainability 11(19):5173

    CAS  Google Scholar 

  • Johansen A, Carter MS, Jensen ES, Hauggard-Nielsen H, Ambus P (2013) Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Appl Soil Ecol 63:36–44

    Google Scholar 

  • Jothi G, Pugalendhi S, Poornima K, Rajendran G (2003) Management of root-knot nematode in tomato Lycopersicon esculentum, mill., with biogas slurry. Bioresour Technol 89(2):169–170

    CAS  PubMed  Google Scholar 

  • Kamara A, Conteh A, Rhodes ER, Cooke RA (2019) The relevance of smallholder farming to African agricultural growth and development. Afr J Food Agric Nutr Dev 19(1):14043–14065

    Google Scholar 

  • Kaur G, Wong JW, Kumar R, Patria RD, Bhardwaj A, Uisan K, Johnravindar D (2020) Value addition of anaerobic digestate from biowaste: thinking beyond agriculture. Curr Sustain Renew Energy Rep 7(2):48–55

    CAS  Google Scholar 

  • Lederer J, Karungi J, Ogwang F (2015) The potential of wastes to improve nutrient levels in agricultural soils: a material flow analysis case study from Busia District, Uganda. Agric Ecosyst Environ 207:26–39

    Google Scholar 

  • Logan M, Visvanathan C (2019) Management strategies for anaerobic digestate of organic fraction of municipal solid waste: current status and future prospects. Waste Manag Res 37(1):27–39

    CAS  PubMed  Google Scholar 

  • Lukehurst C, Bywater A (2015) Exploring the viability of small scale anaerobic digesters in livestock farming. IEA Bioenergy, Dublin

    Google Scholar 

  • Lukehurst CT, Frost P, Al Seadi T (2010) Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy, Dublin, pp 1–36

    Google Scholar 

  • Manyi-Loh CE, Mamphweli SN, Meyer EL, Okoh AI (2019) Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives. Int J Environ Sci Technol 16(7):3913–3934

    CAS  Google Scholar 

  • Massa M, Buono S, Langellotti AL, Castaldo L, Martello A, Paduano A, Sacchi R, Fogliano V (2017) Evaluation of anaerobic digestates from different feedstocks as growth media for Tetradesmus obliquus, Botryococcus braunii, Phaeodactylum tricornutum and Arthrospira maxima. New Biotechnol 36:8–16

    CAS  Google Scholar 

  • Masso C, Baijukya F, Ebanyat P, Bouaziz S, Wendt J, Bekunda M, Vanlauwe B (2017) Dilemma of nitrogen management for future food security in sub-Saharan Africa–a review. Soil Res 55(6):425–434

    PubMed  PubMed Central  Google Scholar 

  • Maurer C, Müller J (2019) Drying characteristics of biogas digestate in a hybrid waste-heat/solar dryer. Energies 12(7):1294

    CAS  Google Scholar 

  • McHenry MP (2009) Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: certainty, uncertainty and risk. Agric Ecosyst Environ 129(1–3):1–7

    CAS  Google Scholar 

  • Mohammadi A, Sandberg M, Venkatesh G, Eskandari S, Dalgaard T, Joseph S, Granström K (2019) Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: using digestate as a source of energy or for biochar production. Energy 182:594–605

    CAS  Google Scholar 

  • Møller HB, Lund I, Sommer SG (2000) Solid–liquid separation of livestock slurry: efficiency and cost. Bioresour Technol 74(3):223–229

    Google Scholar 

  • Möller K (2015) Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron Sustain Develop 35(3):1021–1041

    Google Scholar 

  • Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12(3):242–257

    Google Scholar 

  • Momayez F, Karimi K, Taherzadeh MJ (2019) Energy recovery from industrial crop wastes by dry anaerobic digestion: a review. Ind Crop Prod 129:673–687

    CAS  Google Scholar 

  • Monlau F, Sambusiti C, Ficara E, Aboulkas A, Barakat A, Carrère H (2015) New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ Sci 8(9):2600–2621

    CAS  Google Scholar 

  • Mukherjee S, Tappe W, Weihermueller L, Hofmann D, Köppchen S, Laabs V, Schroeder T, Burauel P (2016) Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based soil mixtures for biopurification systems. Sci Total Environ 544:192–202

    CAS  PubMed  Google Scholar 

  • Mukhuba M, Roopnarain A, Adeleke R, Moeletsi M, Makofane R (2018) Comparative assessment of bio-fertiliser quality of cow dung and anaerobic digestion effluent. Cogent Food Agric 4(1):1435019

    Google Scholar 

  • Mukhuba M, Roopnarain A, Moeletsi ME, Adeleke R (2020) Metagenomic insights into the microbial community and biogas production pattern during anaerobic digestion of cow dung and mixed food waste. J Chem Technol Biotechnol 95(1):151–162

    CAS  Google Scholar 

  • Mukuna BK, Monga JM, Wembi GL, Ipassou A, Lokadi PL (2021) Effects of the Digestate produced by the bio-digester EB.06019.LHT-MWINDA on the pH of Kimwenza-Mission soil and the growth of Amaranthus cruentus. Asian J Soil Sci Plant Nutr 7(1):25–34

    Google Scholar 

  • Nagarajan D, Lee DJ, Chang JS (2019) Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Bioresour Technol 290:121804

    CAS  PubMed  Google Scholar 

  • Nagy D, Balogh P, Gabnai Z, Popp J, Oláh J, Bai A (2018) Economic analysis of pellet production in co-digestion biogas plants. Energies 11(5):1135

    Google Scholar 

  • Nakamya J, Tumuhairwe JB, Sabiiti EN, Strachan NJC, Avery LM, Smith J (2020) Influence of biogas digesters on faecal indicator organisms in digestate and around homesteads in Ethiopia. Biomass Bioenergy 142:105746

    CAS  Google Scholar 

  • Ndambi OA, Pelster DE, Owino JO, De Buisonje F, Vellinga T (2019) Manure management practices and policies in sub-Saharan Africa: implications on manure quality as a fertilizer. Front Sustain Food Syst 3:29

    Google Scholar 

  • Ngole-Jeme VM, Fantke P (2017) Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS One 12(2):e0172517

    PubMed  PubMed Central  Google Scholar 

  • Nicholson F, Bhogal A, Cardenas L, Chadwick D, Misselbrook T, Rollett A et al (2017) Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land. Environ Pollut 228:504–516

    CAS  PubMed  Google Scholar 

  • Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34(2):473–492

    Google Scholar 

  • Nkoa R, Coulombe J, Desjardins Y, Tremblay N (2001) Towards optimization of growth via nutrient supply phasing: nitrogen supply phasing increases broccoli (Brassica oleracea var italica) growth and yield. J Exp Bot 52:821–827

    CAS  PubMed  Google Scholar 

  • Nõlvak H, Truu M, Kanger K, Tampere M, Espenberg M, Loit E, Raave H, Truu J (2016) Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Sci Total Environ 562:678–689

    PubMed  Google Scholar 

  • Ogwang I, Kasedde H, Nabuuma B, Kirabira JB, Lwanyaga JD (2021) Characterization of biogas Digestate for solid biofuel production in Uganda. Sci Afr 12:735

    Google Scholar 

  • Orskov ER, Anchang KY, Subedi M, Smith J (2014) Overview of holistic application of biogas for small scale farmers in sub-Saharan Africa. Biomass Bioenergy 70:4–16

    Google Scholar 

  • Pan Z, Qi G, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, Nishida T, Tangtaweewipat S, Umetsu K (2018) Potential of anaerobic digestate of dairy manure in suppressing soil-borne plant disease. Anim Sci J 89(10):1512–1518

    CAS  PubMed  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34(8):1281–1293

    CAS  PubMed  Google Scholar 

  • Pauw EFD (1994) The management of acid soils in Africa. Outlook Agric 23(1):11–16

    Google Scholar 

  • Peng W, Pivato A (2019) Sustainable Management of Digestate from the organic fraction of municipal solid waste and food waste under the concepts of Back to earth alternatives and circular economy. Waste Biomass Valoriz 10(2):465–481

    CAS  Google Scholar 

  • Petrova IP, Ruser R, Guzman-Bustamante I (2021) Pellets from biogas Digestates: a substantial source of N2O emissions. Waste Biomass Valoriz 12(5):2433–2444

    CAS  Google Scholar 

  • Pezzolla D, Bol R, Gigliotti G, Sawamoto T, López AL, Cardenas L, Chadwick D (2012) Greenhouse gas (GHG) emissions from soils amended with digestate derived from anaerobic treatment of food waste. Rapid Commun Mass Spectrom 26(20):2422–2430

    CAS  PubMed  Google Scholar 

  • Plana PV, Noche B (2016) A review of the current digestate distribution models: storage and transport. Waste Manag Environ VIII(1(Wm)):345–357

    Google Scholar 

  • Primmer, N. (2021). Biogas: Pathways to 2030

    Google Scholar 

  • Qian X, Gu J, Sun W, Wang XJ, Su JQ, Stedfeld R (2018) Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J Hazard Mater 344:716–722

    CAS  PubMed  Google Scholar 

  • Quintern M, Morley M (2017) Vermicomposting of biosolids and beneficial reuse—New Zealand commercial case studies from 4 communities over 8 years. Proc Water Environ Fed 2017(1):1084–1098

    Google Scholar 

  • Rajendran K, Mahapatra D, Venkatraman AV, Muthuswamy S, Pugazhendhi A (2020) Advancing anaerobic digestion through two-stage processes: current developments and future trends. Renew Sust Energ Rev 123:109746

    CAS  Google Scholar 

  • Rehl T, Müller J (2011) Life cycle assessment of biogas digestate processing technologies. Resour Conserv Recycl 56(1):92–104

    Google Scholar 

  • Riaz L, Wang Q, Yang Q, Li X, Yuan W (2020) Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Sci Total Environ 718:137414

    CAS  PubMed  Google Scholar 

  • Risberg K, Cederlund H, Pell M, Arthurson V, Schnürer A (2017) Comparative characterization of digestate versus pig slurry and cow manure – chemical composition and effects on soil microbial activity. Waste Manag 61:529–538

    CAS  PubMed  Google Scholar 

  • Roopnarain A, Adeleke R (2017) Current status, hurdles and future prospects of biogas digestion technology in Africa. Renew Sust Energ Rev 67:1162–1179

    CAS  Google Scholar 

  • Roopnarain A, Ndaba B, Bello-Akinosho M, Bamuza-Pemu E, Mukhuba M, Nkuna R, Adeleke R (2020) Biogas Technology in Africa: an assessment of feedstock, barriers, socio-economic impact and the way forward. In: Balagurusamy N, Chandel AK (eds) Biogas production. Springer, Cham. https://doi.org/10.1007/978-3-030-58827-4_18

    Chapter  Google Scholar 

  • Roopnarain A, Nkuna R, Ndaba B, Adeleke R (2019) New insights into the metagenomic link between pre-treatment method, addition of an inoculum and biomethane yield during anaerobic digestion of water hyacinth (Eichhornia crassipes). J Chem Technol Biotechnol 94(10):3217–3226

    CAS  Google Scholar 

  • Różyło K, Oleszczuk P, Jośko I, Kraska P, Kwiecińska-Poppe E, Andruszczak S (2015) An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environ Sci Pollut Res 22(10):7833–7842

    Google Scholar 

  • Salam LB, Ilori MO, Amund OO, LiiMien Y, Nojiri H (2018) Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil. Environ Technol 39(7):939–951

    CAS  PubMed  Google Scholar 

  • Saleh A (2012) Biogas potential in Pakistan. Biomass Conversion Research Centre, Department of Chemical Engineering, COMSATS Institute of information Technology, Lahore

    Google Scholar 

  • Seadi T, Al Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Reviewers RJ, Sioulas K, Kulisic B (2008) Biogas: training handbook

    Google Scholar 

  • Shi L, Simplicio WS, Wu G, Hu Z, Hu H, Zhan X (2018) Nutrient recovery from digestate of anaerobic digestion of livestock manure: a review. Curr Pollut Rep 4(2):74–83

    CAS  Google Scholar 

  • Sigurnjak I, De Waele J, Michels E, Tack FMG, Meers E, De Neve S (2017) Nitrogen release and mineralization potential of derivatives from nutrient recovery processes as substitutes for fossil fuel-based nitrogen fertilizers. Soil Use Manag 33(3):437–446

    Google Scholar 

  • Sogn TA, Dragicevic I, Linjordet R, Krogstad T, Eijsink VGH, Eich-Greatorex S (2018) Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int J Recycl Organ Waste Agric 7(1):49–58

    Google Scholar 

  • Stoknes K, Beyer DM, Norgaard E (2013) Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity. J Sci Food Agric 93(9):2188–2200

    CAS  PubMed  Google Scholar 

  • Stoknes K, Scholwin F, Krzesiński W, Wojciechowska E, Jasińska A (2016) Efficiency of a novel “food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag 56:466–476

    CAS  PubMed  Google Scholar 

  • Sun H, Bjerketorp J, Levenfors JJ, Schnürer A (2020) Isolation of antibiotic-resistant bacteria in biogas digestate and their susceptibility to antibiotics. Environ Pollut 266:115265

    CAS  PubMed  Google Scholar 

  • Tambone F, Genevini P, D’Imporzano G, Adani F (2009) Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour Technol 100(12):3140–3142

    CAS  PubMed  Google Scholar 

  • Tambone F, Orzi V, D'Imporzano G, Adani F (2017) Solid and liquid fractionation of digestate: mass balance, chemical characterization, and agronomic and environmental value. Bioresour Technol 243:1251–1256

    CAS  PubMed  Google Scholar 

  • Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81(5):577–583

    CAS  PubMed  Google Scholar 

  • Tampio E, Salo T, Rintala J (2016) Agronomic characteristics of five different urban waste digestates. J Environ Manag 169:293–302

    CAS  Google Scholar 

  • Tao X, Shang B, Dong H, Chen Y, Xin H (2014) Effects of digestate from swine manure digester on in vitro growth of crop fungal pathogens: a laboratory study. Trans ASABE 57(6):1803–1810

    Google Scholar 

  • Teater C, Yue Z, MacLellan J, Liu Y, Liao W (2011) Assessing solid digestate from anaerobic digestion as feedstock for ethanol production. Bioresour Technol 102(2):1856–1862

    CAS  PubMed  Google Scholar 

  • Teglia C, Tremier A, Martel JL (2011) Characterization of solid digestates: part 1, review of existing indicators to assess solid digestates agricultural use. Waste Biomass Valoriz 2(1):43–58

    Google Scholar 

  • Törnwall E, Pettersson H, Thorin E, Schwede S (2017) Post-treatment of biogas digestate–an evaluation of ammonium recovery, energy use and sanitation. Energy Procedia 142:957–963

    Google Scholar 

  • Tshikalange B, Bello ZA, Ololade OO (2020) Comparative nutrient leaching capability of cattle dung biogas digestate and inorganic fertilizer under spinach cropping condition. Environ Sci Pollut Res 27(3):3237–3246

    CAS  Google Scholar 

  • Vaneeckhaute C, Lebuf V, Michels E, Belia E, Vanrolleghem PA, Tack FM, Meers E (2017) Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valoriz 8(1):21–40

    CAS  Google Scholar 

  • Vitti A, Elshafie HS, Logozzo G, Marzario S, Scopa A, Camele I, Nuzzaci M (2021) Physico-chemical characterization and biological activities of a digestate and a more stabilized digestate-derived compost from agro-waste. Plan Theory 10(2):386

    CAS  Google Scholar 

  • Vu QD, de Neergaard A, Tran TD, Hoang HTT, Vu VTK, Jensen LS (2015) Greenhouse gas emissions from passive composting of manure and digestate with crop residues and biochar on small-scale livestock farms in Vietnam. Environ Technol 36(23):2924–2935

    CAS  PubMed  Google Scholar 

  • Wiśniewski D, Siudak M, Piechocki J (2017) Small-scale energy use of agricultural biogas plant wastes by gasification. In: Gasification for low-grade feedstock. IntechOpen, London

    Google Scholar 

  • Worldometers.info 2021, Dover, Delaware, U.S.A. Accessed 30 April 2021. https://www.worldometers.info/world-population/africa-population/

  • Wu S, He H, Inthapanya X, Yang C, Lu L, Zeng G, Han Z (2017) Role of biochar on composting of organic wastes and remediation of contaminated soils—a review. Environ Sci Pollut Res 24(20):16560–16577

    CAS  Google Scholar 

  • Xia A, Murphy JD (2016) Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 34(4):264–275

    CAS  PubMed  Google Scholar 

  • Yu FB, Luo XP, Song CF, Zhang MX, Shan SD (2010) Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agric Scand Sect B Soil Plant Sci 60(3):262–268

    Google Scholar 

  • Zeng Y, De Guardia A, Dabert P (2016) Improving composting as a post-treatment of anaerobic digestate. Bioresour Technol 201:293–303

    CAS  PubMed  Google Scholar 

  • Zhao N, Mou H, Zhou Y, Ju X, Yang S, Liu S, Dong R (2021) Upgrading solid digestate from anaerobic digestion of agricultural waste as performance enhancer for starch-based mulching biofilm. Molecules 26(4):832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yang QS, Yang S, Zhao HM, Duan QS, Yang YX, Qin XD (2014) Effects of biogas slurry pretreatment on germination and seedling growth of Vicia faba L. Adv Mater Res 955-959:208–212

    Google Scholar 

  • Zirkler D, Peters A, Kaupenjohann M (2014) Elemental composition of biogas residues: variability and alteration during anaerobic digestion. Biomass Bioenergy 67:89–98

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of South Africa (NRF; Grant number 121924 and 128307). Opinions expressed and conclusions reached are those of the authors and not necessarily endorsed by the NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashira Roopnarain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roopnarain, A., Ndaba, B., Rama, H., Obi, L., Bello-Akinosho, M., Akindolire, M. (2022). Liquid Gold: Harnessing the Potential of Digestate to Enhance Smallholder Farmer Food Security and Livelihood. In: Mupambwa, H.A., Nciizah, A.D., Nyambo, P., Muchara, B., Gabriel, N.N. (eds) Food Security for African Smallholder Farmers. Sustainability Sciences in Asia and Africa(). Springer, Singapore. https://doi.org/10.1007/978-981-16-6771-8_19

Download citation

Publish with us

Policies and ethics