Skip to main content

Gut Dysbiosis in Insomnia and Diurnal Cycle

  • Chapter
  • First Online:
Probiotic Research in Therapeutics

Abstract

Prolonged insomnia may shorten the life expectancy in humans, as this sleeping disorder has already been associated with miscellaneous detrimental health effects on humans such as risk of elevated blood pressure, type 2 diabetes, hyperlipidemia, obesity, coronary heart disease (CHD), and stroke. Numerous studies manifested that onset of sleeplessness and insomnia is linked to disruption of circadian and microbiome rhythms, immune response, and nutrient metabolism, however, precise mechanism is yet to be elucidated. Moreover, it is now understood that gut dysbiosis and circadian rhythm disruption can affect the quality of sleep, and are associated with other metabolic disorders. Considerable evidences have shown that gut microbiome regulates sleep and psychological states of its host through microbiome–gut–brain (MGB) axis. Research findings have indicated that diurnal variations, emotional state, and physiological stress can disrupt the composition and function of gut microbiota which in turn destabilizes host’s circadian gene expression and functions. Consequently, disruptions of gut microbiome-mediated functions such as diminished bile acids conjugation or enhanced generation of H2S, and the reduced butyrate production, in turn affect substrate oxidation and metabolic homeostasis of the host. Furthermore, gut dysbiosis and altered circadian gene expression may cause onset of insomnia, circadian misalignment, and metabolic disorders. Nevertheless, insomnia condition can be reversed by: (1) achieving daily rhythmicity of gut bacteria by prebiotics enriched dietary interventions; (2) adopting healthy lifestyle especially meal timing, selective eating patterns and sleep timing; and (3) oral administration of probiotics in order to restore the gut microbial balance. Thus, manipulation of gut microbiome structure through synbiotic diet and chrononutrition-based approaches may therefore hold promise to consolidate host circadian rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 8:e66986

    Google Scholar 

  • Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in western infants. Acta Paediatr 98:229–238

    Article  CAS  PubMed  Google Scholar 

  • Angelberger S, Reinsch W, Makristathis A et al (2013) Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol 108:1620–1630

    Article  CAS  PubMed  Google Scholar 

  • Archer SN, Laing EE, Moller-Levet CS et al (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111:E682–E691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atarashi K, Tanoue T, Oshima K et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236

    Article  CAS  PubMed  Google Scholar 

  • Avershina E, Rudi K (2015) Confusion about the species richness of human gut microbiota. Benefic Microbes 6:657–659

    Article  CAS  Google Scholar 

  • Azzini E, Polita A, Fumagalli A et al (2011) Mediterranean diet effects: an Italian picture. Nutr J 10:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  Google Scholar 

  • Baker JL, Michaelsen KF, Rasmussen KM et al (2004) Maternal prepregnant body mass index, duration of breast-feeding, and timing of complementary food introduction are associated with infant weight gain. Am J Clin Nutr 80:1579–1588

    Article  CAS  PubMed  Google Scholar 

  • Barrett E (2014) gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 116:1384–1386

    Google Scholar 

  • Bass J (2012) Circadian topology of metabolism. Nature 491:348–356

    Article  CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer KC, Huus KE, Finlay BB (2016) Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cell Microbiol 18:632–644

    Article  CAS  PubMed  Google Scholar 

  • Bechtold DA, Gibbs JE, Loudon AS (2010) Circadian dysfunction in disease. Trends Pharmacol Sci 31:191–198

    Article  CAS  PubMed  Google Scholar 

  • Belizario JE, Faintuch J (2018) Microbiome and gut dysbiosis. Experientia Suppl 109:459–476

    Article  CAS  Google Scholar 

  • Belizario JE, Faintuch J, Garay-Malpartida M (2018) Gut microbiome dysbiosis and Immunometabolism: new frontiers for treatment of metabolic diseases. Mediators Inflamm 2018:2037838

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedict C, Vogel H, Jonas W et al (2016) Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol Metab 5:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bercik P, Denou E, Collins J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behaviour in mice. Gastroenterologia 141(2):599–609

    Article  CAS  Google Scholar 

  • Beydoun MA, Gamaldo AA, Canas JA et al (2014) Serum nutritional biomarkers and their associations with sleep among us adults in recent national surveys. PLoS One 9:e103490

    Article  PubMed  PubMed Central  Google Scholar 

  • Bobinski R, Michalik A (2010) Evaluation of early jet lag symptoms by passengers crossing 7 time zones. In: International Conference on Transport Systems Telematics (TST), vol 2010, pp 356–363

    Chapter  Google Scholar 

  • Bonaz B, Picq C, Sinniger V et al (2013) Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil 25:208–221

    Article  CAS  PubMed  Google Scholar 

  • Borody TJ, Warren EF, Leis SM et al (2004) Bacteriotherapy using fecal flora: toying with human motions. J Clin Gastroenterol 38(6):475–483

    Article  PubMed  Google Scholar 

  • Brandstaetter R (2004) Circadian lessons from peripheral clocks: is the time of the mammalian pacemaker up? Proc Natl Acad Sci U S A 101:5699–5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt LJ, Aroniadis OC (2013) An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc 78(2):240–249

    Article  PubMed  Google Scholar 

  • Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breit S, Kupferberg A, Rogler G et al (2018) Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front Psychiatry 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown R, Price RJ, King MG et al (1990) Are antibiotic effects on sleep behavior in the rat due to modulation of gut bacteria? Physiol Behav 48:561–565

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F et al (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Kowalska E, Dallmann R (2012) (Re)inventing the circadian feedback loop. Dev Cell 22:477–487

    Article  CAS  PubMed  Google Scholar 

  • Buford TW (2017) (Dis) Trust your gut: the gut microbiome in age related inflammation, health, and disease. Microbiome 5:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 217:3–27

    Article  CAS  Google Scholar 

  • Burokas A, Arboleya S, Moloney RD et al (2017) Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 82:472–487

    Article  CAS  PubMed  Google Scholar 

  • Cahenzil J, Koller Y, Wyss M et al (2013) Intestinal microbial diversity during early-life colonization shapes long term IgE levels. Cell Host Microbe 14:559–570

    Article  Google Scholar 

  • Carbonero F, Benefiel A, Alizadeh-Ghamsari A et al (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3:448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carding S, Verbeke K, Vipnod DT et al (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191

    PubMed  Google Scholar 

  • Chaix A, Zarrinpar A, Miu P et al (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20:991–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassaing B, Koren O, Goodrich JK et al (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Devaraj S (2018) Gut microbiome in obesity, metabolic syndrome, and diabetes. Curr Diab Rep 18:129

    Article  CAS  PubMed  Google Scholar 

  • Chung KH, Li CY, Kuo SY et al (2015) Risk of psychiatric disorders in patients with chronic insomnia and sedative hypnotic prescription: a nationwide population-based follow-up study. J Clin Sleep Med 11:542–550

    Article  Google Scholar 

  • Collado MC, Isolauri E, Laitinen K et al (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Costello EK, Stagaman K, Dethlefsen L et al (2012) The application of ecological theory towards an understanding of the human microbiome. Science 336:1255–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox LM, Blaser MJ (2013) Pathways in microbe-induced obesity. Cell Metab 17:883–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    Article  CAS  PubMed  Google Scholar 

  • David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559

    Article  CAS  PubMed  Google Scholar 

  • Davies SK, Ang JE, Revell VL et al (2014) Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A 111:10761–10766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Palma G, Lynch MD, Lu J et al (2017) Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut functions and behavior in recipient mice. Sci Transl Med 9(379):eaaf6397

    Article  PubMed  Google Scholar 

  • DeFilippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696

    Article  Google Scholar 

  • Depnar CM, Stothard ER, Wright KP Jr (2014) Metabolic consequences of sleep and circadian disorders. Curr Diab Rep 14(7):507

    Article  Google Scholar 

  • Desbonnet L, Garrett L, Clarke G et al (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Diaz Heijtz R, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052

    Article  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  • Dinan TG, Cryan JF (2017) The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 46:77–89

    Article  PubMed  Google Scholar 

  • Donnet-Hughes A, Schriffin E, Walker WA (2015) Protective properties of human milk and bacterial colonization of the neonatal gut. In: Duggan C, Koletzko B, Watkins J, Walker WA (eds) Nutrition in pediatrics—basic science clinical aspects, 5th edn. Chinese Publications, New Haven, CT, pp 165–250. Chapter 30

    Google Scholar 

  • Eggink HM, Oosterman JE, de Goede P et al (2017) Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats. Chronobiol Int 34:1339–1353

    Article  CAS  PubMed  Google Scholar 

  • Elinav E, Strowig T, Kau AL et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faith JJ, Guruge JL, Charbonneau M et al (2013) The long-term stability of the human gut microbiota. Science 341:1237439

    Article  PubMed  PubMed Central  Google Scholar 

  • Farre EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16:621–629

    Article  CAS  PubMed  Google Scholar 

  • Fava F, Gitau R, Griffin BA et al (2013) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes (Lond) 37:216–223

    Article  CAS  Google Scholar 

  • Feng X, Uchida Y, Koch L et al (2017) Exercise prevents enhanced postoperative neuroinflammation and cognitive decline and rectifies the gut microbiome in a rat model of metabolic syndrome. Front Immunol 8:1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Finger BC, Dinan TG, Cryan JF (2011) High-fat diet selectively protects against the effects of chronic social stress in the mouse. Neuroscience 192:351–360

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Distrutti E (2015) Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med 21:702–714

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald GA, Yang G, Paschos GK et al (2015) Molecular clocks and the human condition: approaching their characterization in human physiology and disease. Diabetes Obes Metab 17(Suppl 1):139–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Flowers SA, Ellingrod VL (2015) The microbiome in mental health: potential contribution of gut microbiota in disease and pharmacotherapy management. Pharmacotherapy 35:910–916

    Article  PubMed  Google Scholar 

  • Foster JA, McVey Neufeld KA (2013) Gut-brain: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    Article  CAS  PubMed  Google Scholar 

  • Giskeodegard GF, Davies SK, Revell VL et al (2015) Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci Rep 5:14843

    Article  PubMed  PubMed Central  Google Scholar 

  • Gismondo MR, Drago L, Lombardi A (1999) Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents 12(4):287–292

    Article  CAS  PubMed  Google Scholar 

  • Golombek DA, Casiraghi LP, Agostino PV et al (2013) The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris 107:310–322

    Article  PubMed  Google Scholar 

  • Guida F, Turco F, Iannotta M et al (2018) Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun 67:230–245

    Article  CAS  PubMed  Google Scholar 

  • Henao-Mejia J, Strowig T, Flavell RA (2013) Microbiota keep the intestinal clock ticking. Cell 153:741–743

    Article  CAS  PubMed  Google Scholar 

  • Holmes E, Li JV, Athanasiou T et al (2011) Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 19:349–359

    Article  CAS  PubMed  Google Scholar 

  • Houghteling P, Walker WA (2015) Why is initial bacterial colonization of the intestine important to the infant’s and child’s health. J Pediatr Gastroenterol Nutr 60:294–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao EY, McBride SW, Hsien S et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungin AP, Mulligan C, Pot B et al (2013) Systematic review: probiotics in the management of lower gastrointestinal symptoms in clinical practice—an evidence-based international guide. Aliment Pharmacol Ther 38:864–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson ML, Butt H, Ball M et al (2015) Sleep quality and the treatment of intestinal microbiota imbalance in Chronic Fatigue Syndrome: a pilot study. Sleep Sci 8:124–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakobsson HE, Abraharnsson TR, Jenmalum MC et al (2014) Decreased gut microbiota diversity, delayed Bacteriodetes colonization and reduced Th1 response in infants delivered by caesarean section. Gut 63:559–566

    Article  CAS  PubMed  Google Scholar 

  • Johnson CK, Versalovic J (2012) The human microbiome and its potential importance in paediatrics. Pediatrics 129:950–960

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Stewart PL, Egli M (2011) The cyanobacterial circadian system: from biophysics to bioevolution. Annu Rev Biophys 40:143–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Zhao C, Xu Y et al (2017) Timing the day: what makes bacterial clocks tick? Nat Rev Microbiol 15:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce SA, MacSharry J, Casey PG et al (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A 111:7421–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczmarek JL, Musaad SM, Holscher HD (2017) Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr 106:1220–1231

    CAS  PubMed  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103

    Article  CAS  PubMed  Google Scholar 

  • Kato T (2007) Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 61:3–19

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Clarke G, Cryan JF et al (2016) Brain-gut-microbiota axis: challenges for translation in psychiatry. Ann Epidemiol 26:366–372

    Article  PubMed  Google Scholar 

  • Kim TW, Jeong JH, Hong SC (2015) The impact of sleep and circadian disturbance on hormones and metabolism. Int J Endocrinol 2015:591729

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohsaka A, Laposky AD, Ramsey KM et al (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421

    Article  CAS  PubMed  Google Scholar 

  • Konturek PC, Brozozowski T, Konturek SJ (2011) Gut clock: implication of circadian rhythms in the gastrointestinal tract. J Physiol Pharmacol 62(2):139–150

    CAS  PubMed  Google Scholar 

  • Labbe A, Ganopolsky JG, Martoni CJ et al (2014) Bacterial bile metabolising gene abundance in Crohn’s, ulcerative colitis and type 2 diabetes metagenomes. PLoS One 9:e115175

    Article  PubMed  PubMed Central  Google Scholar 

  • Leone V, Gibbons SM, Martinez K et al (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17:681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hao Y, Fan F et al (2018) The role of microbiome in insomnia, circadian disturbance and depression. Front Psychiatry 9:669

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X, Bushman FD, FitzGerald GA (2015) Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A 112:10479–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Lin W, Chen S et al (2019) Gut microbiota as an objective measurement for auxiliary diagnosis of insomnia disorder. Front Microbiol 10:1770

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis P, Scott KP, Duncan SH et al (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102:1197–1208

    Article  CAS  PubMed  Google Scholar 

  • Macedo D, Filho AJMC, Soares de Sousa CN et al (2017) Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord 208:22–32

    Article  CAS  PubMed  Google Scholar 

  • Magnusdottir S, Ravcheev D, de Crecy-Lagard V et al (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Maharshak N, Packey CD, Ellermann M et al (2013) Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 4(4):316–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Malinen E, Mättö J, Salmitie M et al (2002) PCR-ELISA: II: Analysis of Bifidobacterium populations in human faecal samples from a consumption trial with Bifidobacterium lactis Bb-12 and a galacto-oligosaccharide preparation. Syst Appl Microbiol 25:249–258

    CAS  PubMed  Google Scholar 

  • Marcobal A, Southwick AM, Earle K et al (2013) A refined palate: bacterial consumption of host glycans in the gut. Glycobiology 23:1038–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariat D, Firmesse O, Levenez F et al (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazidi M, Shemshian M, Mousavi SH et al (2016) A double-blind, randomized and placebo-controlled trial of Saffron (Crocus sativus L.) in the treatment of anxiety and depression. J Complement Integr Med 13:195–199

    PubMed  Google Scholar 

  • Marquet P, Duncan SH, Chassard C et al (2009) Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett 299:128–134

    Article  CAS  PubMed  Google Scholar 

  • Merrow M, Maas MF (2009) Circadian clocks: evolution in the shadows. Curr Biol 19:R1042–R1045

    Article  CAS  PubMed  Google Scholar 

  • Millar AJ (2016) The intracellular dynamics of circadian clocks reach for the light of ecology and evolution. Annu Rev Plant Biol 67:595–618

    Article  CAS  PubMed  Google Scholar 

  • Moya A, Ferrer M (2016) Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol 24:402–413

    Article  CAS  PubMed  Google Scholar 

  • Mshvidadze M, Neu J, Shuster J et al (2010) Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr 156:20–25

    Article  Google Scholar 

  • Murakami T, Kamada K, Mizushima K et al (2017) Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion 95:55–60

    Article  CAS  PubMed  Google Scholar 

  • Nicholls P, Marshall DC, Cooper CE et al (2013) Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochem Soc Trans 41:1312–1316

    Article  CAS  PubMed  Google Scholar 

  • Nobs SP, Tuganbaev T, Elinav E (2019) Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep 20:e47129

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE et al (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Oosterman JE, Kalsbeek A, la Fleur SE et al (2015) Impact of nutrients on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 308:337–350

    Article  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    Article  PubMed  PubMed Central  Google Scholar 

  • Panda S, Antoch MP, Miller BH et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  CAS  PubMed  Google Scholar 

  • Parekh PJ, Balart LA, Johnson DA (2015) The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin Transl Gastroenterol 6:e91

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkar SG, Blatchford PA, Kim CC et al (2015) New and tailored prebiotics: established applications. In: Venema K (ed) Probiotics and prebiotics: current research and future trends. Caister Academic Press, Poole, pp 289–314

    Chapter  Google Scholar 

  • Parkar SG, Kalsbeek A, Cheeseman JF (2019) Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms 7(2):41

    Article  CAS  PubMed Central  Google Scholar 

  • Paulose JK, Wright JM, Patel AG et al (2016) Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One 11:e0146643

    Article  PubMed  PubMed Central  Google Scholar 

  • Petra AI, Panagiotidou S, Hatziagelaki E et al (2015) Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37:984–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza-Díaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM et al (2017) Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients 9:E555

    Article  PubMed  Google Scholar 

  • Poroyko VA, Carreras A, Khalyfa A et al (2016) Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep 6:35405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powley TL, Wang XY, Fox EA et al (2008) Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 20:69–79

    CAS  PubMed  Google Scholar 

  • Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AC, Paterson JL, Ferguson SA et al (2017) The shift work and health research agenda: considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Med Rev 34:3–9

    Article  PubMed  Google Scholar 

  • Ridaura V, Belkaid Y (2015) Gut microbiota: the link to your second brain. Cell 161:193–194

    Article  CAS  PubMed  Google Scholar 

  • Rieder R, Wisniewski PJ, Alderman BL et al (2017) Microbes and mental health: a review. Brain Behav Immun 66:9–17

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid MB (2007a) Inulin and oligofructose: health benefits and claims: a critical review, Inulin-type fructans: functional food ingredients. J Nutr 137:2493S–2502S

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid MB (2007b) Prebiotics: the concept revisited. J Nutr 137(3):830S–837S

    Article  CAS  PubMed  Google Scholar 

  • Rogers GB, Keating DJ, Young RL et al (2016) From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 21:738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlke F, Stollman N (2012) Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap Adv Gastroenterol 5:403–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholtens PA, Oozeer R, Martin R et al (2012) The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol 3:425–447

    Article  CAS  PubMed  Google Scholar 

  • Schulze TG, Akula N, Breuer R et al (2014) Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. World J Biol Psychiatry 15:200–208

    Article  PubMed  Google Scholar 

  • Schwartz S, Friedberg I, Ivanov IV et al (2012) A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 13:r32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears CL, Garrett WS (2014) Microbes, microbiota, and colon cancer. Cell Host Microbe 15:317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seow LS, Subramaniam M, Abdin E et al (2016) Sleep disturbance among people with major depressive disorders (MDD) in Singapore. J Ment Health 25:492–499

    Article  PubMed  Google Scholar 

  • Shanahan F, Quigley EM (2014) Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology 146(6):1554–1563

    Article  PubMed  Google Scholar 

  • Sharafati-Chaleshtori R, Shirzad H, Rafieian-Kopaei M et al (2017) Melatonin and human mitochondrial diseases. J Res Med Sci 22:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Shindey R, Varma V, Nikhil KL et al (2016) Evolution of robust circadian clocks in Drosophila melanogaster populations reared in constant dark for over 330 generations. Naturwissenschaften 103:74

    Article  PubMed  Google Scholar 

  • Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suez J, Korem T, Zeevi D et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186

    Article  CAS  PubMed  Google Scholar 

  • Suez J, Zmora N, Zilberman-Schapira G et al (2018) Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174:1406–1423 e1416

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhang M, Chen CC et al (2013) Stress induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice. Gastroenterology 44:1478–1487

    Article  Google Scholar 

  • Tahara Y, Yamazaki M, Sukigara H et al (2018) Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci Rep 8:1395

    Article  PubMed  PubMed Central  Google Scholar 

  • Teng SW, Mukherji S, Moffitt JR et al (2013) Robust circadian oscillations in growing cyanobacteria requires transcriptional feedback. Science 340:737–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss CA, Zeevi D, Levy M et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–529

    Article  CAS  PubMed  Google Scholar 

  • Thaiss CA, Levy M, Korem T et al (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167:1495–1510 e1412

    Article  CAS  PubMed  Google Scholar 

  • The Human Microbiome Project Consortium, Hutternhower C, Gevers D, Knight R et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  PubMed Central  Google Scholar 

  • Thompson RS, Roller R, Mika A et al (2017) Dietary prebiotics and bioactive milk fractions improve nrem sleep, enhance rem sleep rebound and attenuate the stress-induced decrease in diurnal temperature and gut microbial alpha diversity. Front Behav Neurosci 10:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuohy KM, Conterno L, Gasperotti M (2012) Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and fiber. J Agric Food Chem 60:8776–8782

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009a) A core gut microbiome in obese and lean twins. Nature 457:480–485

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ridaura VK, Faith JJ (2009b) The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanuytsel T, van Wanrooy S, Vanheel H et al (2014) Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Vassallo MF, Walker WA (2008) Neonatal microbial flora and disease outcome. Nestle Nutr Workshop Ser Pediatr Program 61:211–224

    Article  PubMed  Google Scholar 

  • Verdam FJ, Fuentes S, de Jonge C et al (2013) Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity 21:E607–E615

    Article  CAS  PubMed  Google Scholar 

  • Vijay-Fumar M, Atiken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328(5975):228–231

    Article  Google Scholar 

  • Voigt RM, Forsyth CB, Green SJ et al (2014) Circadian disorganization alters intestinal microbiota. PLoS One 9:e97500

    Article  PubMed  PubMed Central  Google Scholar 

  • Voigt RM, Summa KC, Forsyth CB et al (2016) The circadian clock mutation promotes intestinal dysbiosis. Alcohol Clin Exp Res 40:335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker WA (2017) Dysbiosis. The microbiota in gastrointestinal pathophysiology, 1st edn, pp 227–232

    Book  Google Scholar 

  • Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230

    Google Scholar 

  • Wang Y, Kuang Z, Yu X et al (2017) The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357:913–916

    Article  Google Scholar 

  • Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38:1–12

    Article  PubMed  Google Scholar 

  • Wei Y, Zhu W, Gong J et al (2015) Fecal microbiota transplantation improves the quality of life in patients with inflammatory bowel disease. Gastroenterol Res Pract 2015:517597

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilhelm I, Diekelmann S, Born J (2008) Sleep in children improves memory performance on declarative but not procedural tasks. Learn Mem 15(5):373–377

    Article  PubMed  Google Scholar 

  • Wirz-Justice A (2006) Biological rhythm disturbances in mood disorders. Int Clin Psychopharmacol 21(Suppl.1):S11–S15

    Article  PubMed  Google Scholar 

  • Wolf G (2002) Three vitamins are involved in regulation of the circadian rhythm. Nutr Rev 60:257–260

    Article  PubMed  Google Scholar 

  • Wong RK, Yang C, Song GH et al (2015) Melatonin regulation as a possible mechanism for probiotic in irritable bowel syndrome: a randomized double-blinded placebo study. Dig Dis Sci 60:186–194

    Article  CAS  PubMed  Google Scholar 

  • Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarandi SS, Peterson DA, Treisman GJ et al (2016) Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil 22:201–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi P, Li L (2012) The germfree murine animal: an important animal model for research on the relationship between gut microbiota and the host. Vet Microbiol 157:1–7

    Article  PubMed  Google Scholar 

  • Yokota A, Fukiya S, Islam KBMS (2012) Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes 3:455–459

    Article  PubMed  Google Scholar 

  • Yoshikawa K, Kurihara C, Furuhashi H et al (2017) Psychological stress exacerbates NSAID-induced small bowel injury by inducing changes in intestinal microbiota and permeability via glucocorticoid receptor signalling. J Gastroenterol 52:61–71

    Article  CAS  PubMed  Google Scholar 

  • Zarrinpar A, Chaix A, Yooseph S et al (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechner LE (2017) Inflammatory disease caused by intestinal pathobionts. Curr Opin Microbiol 35:64–69

    Article  PubMed  Google Scholar 

  • Zhang YKJ, Guo GL, Klaassen CD (2011) Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS One 6:e16683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Lahens NF, Ballance HI et al (2014) A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci U S A 111:16219–16224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Zeng B, Zhou C et al (2016) Gut microbiome remodelling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21:786–796

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Ma Y, Ding S et al (2018) Effects of melatonin on intestinal microbiota and oxidative stress in colitis mice. Biomed Res Int 2018:2607679

    Article  PubMed  PubMed Central  Google Scholar 

  • Zmora N, Zilberman-Schapira G, Suez J et al (2018) Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174:1388–1405 e1321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R. (2022). Gut Dysbiosis in Insomnia and Diurnal Cycle. In: Deol, P.K., Sandhu, S.K. (eds) Probiotic Research in Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-16-6760-2_8

Download citation

Publish with us

Policies and ethics