Skip to main content

To Analyse the Impact of Water Scarcity in Developing Countries Using Machine Learning

  • Conference paper
  • First Online:
Evolution in Computational Intelligence

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 267))

Abstract

It is quite common to hear the phrase ‘Water is the elixir of life’. In the current scenario, water has become an alarmingly depleted quantity. Overconsumption of resources has affected the water table and humans have a big cost to pay. The notion of ‘Water Consumption’ has grown to form stronger and deeper roots, awareness regarding the same has thrust upon an individual. Despite all the moves in the right direction, access to drinking water is a huge cause of concern in developing nations. Water Pumps are considered as one of the most important innovations of all time. In developing nations, it is quite a common sight to spot a water pump for it strives to be a single point of destination to usable water. In recent times, most of the water pumps are not functioning, some partially functional and some functioning, this is a cause of concern. With the aid of Data Mining and Machine Learning concepts, being able to create a model to predict the functionality of the same can prove to be fruitful. To analyse and understand the impact of the availability of water in Tanzania, by studying the operational status of water pumps around the country, and the number of water-related deaths in the region. Through solid inference, the knowledge regarding the same can be extrapolated to different regions around the globe suffering from the same crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhanush, G.A., Raj, K.S., Kumar, P.: Blockchain aided predictive time series analysis in supply chain system. In: Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N. (eds.) Innovations in Electrical and Electronic Engineering, pp. 913–925. Springer, Singapore (2021)

    Google Scholar 

  2. Mittal, S., Mittal, M., Khan, M.S.A.: Ground-Level Water Predication Using Time Series Statistical Model, pp. 427–437 (2021). https://doi.org/10.1007/978-981-15-5421-6_43

  3. Moleda, M., Momot, A., Mrozek, D.: Predictive maintenance of boiler feed water pumps using scada data. Sensors 20(2) (2020). https://doi.org/10.3390/s20020571, https://www.mdpi.com/1424-8220/20/2/571

  4. Pandey, S., Muthuraman, S., Shrivastava, A.: Data Classification Using Machine Learning Approach, pp. 112–122 (2018). https://doi.org/10.1007/978-3-319-68385-0_10

  5. Qin, T.L., Yan, D.H., Wang, G., Yin, J.: Water demand forecast in the baiyangdian basin with the extensive and low-carbon economic modes. J. Appl. Math. 2014, 673485 (2014)

    Google Scholar 

  6. Raghavendra Prasad, J.E., Senthil, M., Yadav, A., Gupta, P., Anusha, K.S.: A comparative study of machine learning algorithms for gas leak detection. In: Ranganathan, G., Chen, J., Rocha, Á. (eds.) Inventive Communication and Computational Technologies, pp. 81–90. Springer, Singapore (2021)

    Google Scholar 

  7. Raj, K.S., Nishanth, M., Jeyakumar, G.: Design of Binary Neurons with Supervised Learning for Linearly Separable Boolean Operations, pp. 480–487 (2020). https://doi.org/10.1007/978-3-030-37218-7_54

  8. Saleth, R.: Water scarcity and climatic change in india: The need for water demand and supply management. Hydrol. Sci. J.—J. Sci. Hydrol. 56, 671–686 (2011). https://doi.org/10.1080/02626667.2011.572074

  9. Ununiversity: Monitoring sustainability of rural water supplies in sub-saharan africa. United Nations University https://unu.edu/projects/monitoring-sustainability-of-rural-water-supplies-in-sub-saharan-africa-ph-d-sekela-twisa.html#outline

  10. Wilson, D.L., Coyle, J.R., Thomas, E.A.: Ensemble machine learning and forecasting can achieve 99% uptime for rural handpumps. PLOS ONE 12(11), 1–13 (2017). https://doi.org/10.1371/journal.pone.0188808, https://doi.org/10.1371/journal.pone.0188808

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran S. Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raj, K.S., Kumar, P. (2022). To Analyse the Impact of Water Scarcity in Developing Countries Using Machine Learning. In: Bhateja, V., Tang, J., Satapathy, S.C., Peer, P., Das, R. (eds) Evolution in Computational Intelligence. Smart Innovation, Systems and Technologies, vol 267. Springer, Singapore. https://doi.org/10.1007/978-981-16-6616-2_6

Download citation

Publish with us

Policies and ethics