Skip to main content

Optimization of Pneumatic Extrusion Machining Method Process Parameters on Polycaprolactone (PCL) Material

  • Conference paper
  • First Online:
Intelligent Manufacturing and Energy Sustainability

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 265))

  • 1066 Accesses

Abstract

Polycaprolactone (PCL) is an auspicious material for bone repair and bone replacement due to similar naturally occurring inorganic components. In this work, the polycaprolactone (PCL) scaffolds are manufactured using pneumatic extrusion method and scanning electron microscopy (SEM) images of the manufactured scaffolds can be produced to display the interior of the scaffold struts and the profile of in vitro release can be done to reveal the biocompatibility of the scaffolds. In order to confirm the performance of the manufactured composite scaffolds for the required strength of bone loadbearing regions, the UTM tests are carried out, and after this, the Taguchi optimization technique was applied to the numerical data derived from the experiments with the concept of the L9 orthogonal array. From this, it was determined that 40% porosity scaffold, 30 and 90 filament angle, 0.5 mm nozzle diameter is a sophisticated design compatible with the structure and function of the natural bone trabecular part. Taken together these results show that PCL scaffolds can be manufactured easily using 3D printing technology and can be a possible solution as implantable material for bone tissue engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guillemot, F., Mironov, V., Nakamura, M.: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in Bordeaux (3B’09). Biofabrication 2(1) (2010). https://doi.org/10.1088/1758-5082/2/1/010201

  2. Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R.R.: Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21(4), 157–161 (2003). https://doi.org/10.1016/S0167-7799(03)00033-7

    Article  Google Scholar 

  3. Murphy, S.V., Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773–785 (2014). https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  4. Abeykoon, C., Martin, P.J., Kelly, A.L., Brown, E.C.: A review and evaluation of melt temperature sensors for polymer extrusion. Sensors Actuators A Phys. 182, 16–27 (2012). https://doi.org/10.1016/j.sna.2012.04.026

    Article  Google Scholar 

  5. Zein, D., Hutmacher, W., Tan, K.C., Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4), 1169–1185 (2002). https://doi.org/10.1016/S0142-9612(01)00232-0

  6. Lin, C.Y., Kikuchi, N., Hollister, S.J.: A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37(5), 623–636 (2004). https://doi.org/10.1016/j.jbiomech.2003.09.029

    Article  Google Scholar 

  7. Schek, R.M., Wilke, E.N., Hollister, S.J., Krebsbach, P.H.: Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials 27(7), 1160–1166 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.029

    Article  Google Scholar 

  8. Pfister, R.L., Laib, A., Hübner, U., Schmelzeisen, R., Mülhaupt, R.: Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J. Polym. Sci. Part A Polym. Chem. 42(3), 624–638 (2004). https://doi.org/10.1002/pola.10807

  9. Khalil, S., Nam, J., Sun, W.: Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp. J. 11(1), 9–17 (2005). https://doi.org/10.1108/13552540510573347

    Article  Google Scholar 

  10. Khalil, S., Sun, W.: Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater. Sci. Eng. C 27(3), 469–478 (2007). https://doi.org/10.1016/j.msec.2006.05.023

    Article  Google Scholar 

  11. Elloumi-Hannachi, M., Yamato, Okano, T.: Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J. Intern. Med. 267(1), 54–70 (2010). https://doi.org/10.1111/j.1365-2796.2009.02185.x

  12. Jakab, K., Neagu, A., Mironov, V., Markwald, R.R., Forgacs, G.: Engineering biological structures of prescribed shaped using self-assembling multicellular systems. Proc. Natl. Acad. Sci. U. S. A. 101(9), 2864–2869 (2004). https://doi.org/10.1073/pnas.0400164101

    Article  Google Scholar 

  13. Mironov, V., Visconti, R.P., Kasyanov, V., Forgacs, G., Drake, C.J., Markwald, R.R.: Organ printing: Tissue spheroids as building blocks. Biomaterials 30(12), 2164–2174 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.084

    Article  Google Scholar 

  14. Norotte, C., Marga, F.S., Niklason, L.E., Forgacs, G.: Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30), 5910–5917 (2009). https://doi.org/10.1016/j.biomaterials.2009.06.034

    Article  Google Scholar 

  15. Ozbolat, T., Hospodiuk, M.: Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  Google Scholar 

  16. Horvath, L., Umehara, Y., Jud, C., Blank, F., Petri-Fink, A., Rothen-Rutishauser, B.: Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 5 (2015). https://doi.org/10.1038/srep07974

  17. Almeida, C.R., Serra, T., Oliveira, M.I., Planell, J.A., Barbosa, M.A., Navarro, M.: Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 10(2), 613–622 (2014). https://doi.org/10.1016/j.actbio.2013.10.035

    Article  Google Scholar 

  18. Bertassoni, L.E., et al.: Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6(2) (2014). https://doi.org/10.1088/1758-5082/6/2/024105

  19. Ehsan, S.M., Welch-Reardon, K.M., Waterman, M.L., Hughes, C.C.W., George, S.C.: A three-dimensional in vitro model of tumor cell intravasation. Integr. Biol. (United Kingdom) 6(6), 603–610 (2014). https://doi.org/10.1039/c3ib40170g

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Y. Venkata Subba Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Venkata Subba Reddy, O.Y., Reddy, A.N.R., Venkatesh, V. (2022). Optimization of Pneumatic Extrusion Machining Method Process Parameters on Polycaprolactone (PCL) Material. In: Reddy, A.N.R., Marla, D., Favorskaya, M.N., Satapathy, S.C. (eds) Intelligent Manufacturing and Energy Sustainability. Smart Innovation, Systems and Technologies, vol 265. Springer, Singapore. https://doi.org/10.1007/978-981-16-6482-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6482-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6481-6

  • Online ISBN: 978-981-16-6482-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics