Skip to main content

Effect of Stress on Ferroelectric, Energy Storage and Harvesting Properties of 0.4BZT-0.6BCT Ceramics

  • Conference paper
  • First Online:
Intelligent Manufacturing and Energy Sustainability

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 265))

  • 1096 Accesses

Abstract

In the present work, the effect of uniaxial stress on ferroelectric properties, energy storage and harvesting is studied for the 0.4Ba(Zr0.2Ti0.8)O3-0.6(Ba0.7Ca0.3)TiO3 (0.4BZT-0.6BCT) ceramics. Therefore, hysteresis loops were measured at different uniaxial compressive stress and temperature. The ferroelectric parameters (maximum polarization, remanent polarization, hysteresis loss and coercive electric field) decrease with an increase in stress. This is because the uniaxial compressive stress depolarizes 0.4BZT-0.6BCT by switching dipole in the energetically favorable direction (generally away from the electric field or poled direction). The maximum recoverable energy storage was found as 73.7 kJ/m3 at 100 °C and 80 MPa. Results show that the uniaxial compressive stress increases the stored energy density by 22% and stored energy efficiency from ~20% to ~38% at 22 °C. The maximum energy harvesting was obtained as 100 kJ/m3 when the cycle was operated between 5–160 MPa and 0.75–2 kV/mm at 22 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kishore, R.A., Priya, S.: A review on low-grade thermal energy harvesting: materials, methods and devices. Materials 11(8), 1433 (2018)

    Article  Google Scholar 

  2. Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., Vaish, R.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7(12), 3836–3856 (2014)

    Article  Google Scholar 

  3. Akram, F., Kim, J., Khan, S.A., Zeb, A., Yeo, H.G., Sung, Y.S., Song, T.K., Kim, M.-H., Lee, S.: Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3-BaTiO3-based ceramics. J. Alloys Compd. 818, 152878 (2020)

    Google Scholar 

  4. Shrout, T.R., Zhang, S.J.: Lead-Free Piezoelectric Ceramics: Alternatives for PZT? Progress in Advanced Dielectrics: World Scientific, pp. 295–327 (2020)

    Google Scholar 

  5. Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., Rossetti Jr, G., Rödel, J.: BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4(4), 041305 (2017)

    Google Scholar 

  6. Li, S., Nie, H., Wang, G., Liu, N., Zhou, M., Cao, F., Dong, X.: Novel AgNbO3-based lead-free ceramics featuring excellent pyroelectric properties for infrared detecting and energy-harvesting applications via antiferroelectric/ferroelectric phase-boundary design. J. Mater. Chem. C. 7(15), 4403–4414 (2019)

    Article  Google Scholar 

  7. McKinley, I.M., Lee, F.Y., Pilon, L.: A novel thermomechanical energy conversion cycle. Appl. Energy. 126, 78–89 (2014)

    Article  Google Scholar 

  8. Nguyen, H., Navid, A., Pilon, L.: Pyroelectric energy converter using co-polymer P (VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Appl. Therm. Eng. 30(14–15), 2127–2137 (2010)

    Article  Google Scholar 

  9. Shen, M., Li, W., Li, M.-Y., Liu, H., Xu, J., Qiu, S., Zhang, G., Lu, Z., Li, H., Jiang, S.: High room-temperature pyroelectric property in lead-free BNT-BZT ferroelectric ceramics for thermal energy harvesting. J. Eur. Ceram. Soc. 39(5), 1810–1818 (2019)

    Article  Google Scholar 

  10. Pilon, L., McKinley, I.M.: Pyroelectric energy conversion. Annu. Rev. Heat Transfer. 19 (2016)

    Google Scholar 

  11. Olsen, R., Bruno, D., Briscoe, A.J., Dullea, J.: Cascaded pyroelectric energy converter. Ferroelectr. 59(1), 205–219 (1984)

    Google Scholar 

  12. Olsen, R.B., Bruno, D.A., Briscoe, J.M.: Pyroelectric conversion cycles. J. Appl. Phys. 58(12), 4709–4716 (1985)

    Article  Google Scholar 

  13. Olsen, R.B., Evans, D.: Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material. J. Appl. Phys. 54(10), 5941–5944 (1983)

    Article  Google Scholar 

  14. Patel, S., Chauhan, A., Vaish, R.: Enhanced energy harvesting in commercial ferroelectric materials. Mater. Res. Express. 1(2), 025504 (2014)

    Google Scholar 

  15. Patel, S., Yadav, H., Kumar, M.: Effect of uniaxial stress on energy harvesting, storage and electrocaloric performance of BZT ceramics. J. Korean Ceram. Soc. 1–8 (2021)

    Google Scholar 

  16. Bijalwan, V., Erhart, J., Spotz, Z., Sobola, D., Prajzler, V., Tofel, P., Maca, K.: Composition driven (Ba, Ca)(Zr, Ti)O3 lead-free ceramics with large quality factor and energy harvesting characteristics. J. Am. Ceram. Soc. 104(2), 1088–1101 (2021)

    Article  Google Scholar 

  17. Ehmke, M.C., Glaum, J., Hoffman, M., Blendell, J.E., Bowman, K.J.: In Situ X-ray Diffraction of Biased Ferroelastic Switching in Tetragonal Lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 Piezoelectrics. J. Am. Ceram. Soc. 96(9), 2913–2920 (2013)

    Google Scholar 

  18. Sun, Z., Wang, Z., Tian, Y., Wang, G., Wang, W., Yang, M., Wang, X., Zhang, F., Pu, Y.: Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Adv. Electron. Mater. 6(1), 1900698 (2020)

    Article  Google Scholar 

  19. Patel, S., Chauhan, A., Rojas, V., Novak, N., Weyland, F., Rödel, J., Vaish, R.: Thermomechanical energy conversion potential of lead‐free 0.50Ba(Zr0.2Ti0.8)O3–0.50(Ba0.7Ca0.3)TiO3 bulk ceramics. Energy Technol. 6(5), 872–882 (2018)

    Google Scholar 

  20. Patel, S., Chauhan, A., Vaish, R.: Analysis of high-field energy harvesting using ferroelectric materials. Energy Technol. 2(5), 480–485 (2014)

    Article  Google Scholar 

  21. Patel, S., Moghal, A.A.B., Madhar, N.A., Chauhan, A., Vaish, R.: Cyclic piezoelectric energy harvesting in PMN-PT single crystals. Ferroelectricity 481(1), 138–145 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

S. Patel acknowledges Florian Weyland for providing the sample; Dr. Nikola Novak and Dr. Rahul Vaish for measurement. S. Patel also acknowledges the financial support received by Science and engineering research board (SERB) for Start-up Research Grant (No. SRG/2020/000188).

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayan Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saurabh, N., Patel, S. (2022). Effect of Stress on Ferroelectric, Energy Storage and Harvesting Properties of 0.4BZT-0.6BCT Ceramics. In: Reddy, A.N.R., Marla, D., Favorskaya, M.N., Satapathy, S.C. (eds) Intelligent Manufacturing and Energy Sustainability. Smart Innovation, Systems and Technologies, vol 265. Springer, Singapore. https://doi.org/10.1007/978-981-16-6482-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6482-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6481-6

  • Online ISBN: 978-981-16-6482-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics