Skip to main content

Diagnostic Special Stains, Immunohistochemical Markers, and Special Techniques Used in Gastrointestinal Tract Pathology

  • Chapter
  • First Online:
Surgical Pathology of the Gastrointestinal System
  • 1789 Accesses

Abstract

The gastrointestinal pathology laboratory services involve an appreciable amount of workload predominantly comprising of luminal endoscopic biopsies and resection specimens. Along with samples soliciting histological diagnoses, many follow-up biopsies are also received for assessment of response to treatment and to look for residual or active disease or secondary tumor deposit. Although usual morphological interpretation on hematoxylin and eosin (H&E) by a team of experienced and skilled gastrointestinal pathologists is usually sufficient in most cases and plays the pivotal role in patient management, at times confirmation by use of few special histochemical stains aids in the diagnostic workup. These stains could be relatively economical but useful adjuncts in confirmation of diagnosis. Application of further ancillary techniques like immunohistochemical panels, in addition to offering specific diagnostic categorization, has also come up with therapeutic and prognostic implications in the era of targeted therapy. With the advent of these theranostic markers, further supplementation by molecular and ultrastructural workup, which are labor-intensive and demand high-end expensive infrastructure, may be rarely required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srivastava A, Appelman H, Goldsmith JD, Davison JM, Hart J, Krasinskas AM. The use of ancillary stains in the diagnosis of Barrett Esophagus and Barrett Esophagus-associated dysplasia: recommendations from the Rodger C. Haggitt Gastrointestinal Pathology Society. Am J Surg Pathol. 2017;41:e8–e21.

    Article  PubMed  Google Scholar 

  2. Fitzgibbons PL. Histochemistry in the diagnosis of non-neoplastic gastrointestinal disorders. Semin Diagn Pathol. 2018;35:370–80.

    Google Scholar 

  3. Smith JL, Dixon MF. Is subtyping of intestinal metaplasia in the upper gastrointestinal tract a worthwhile exercise? An evaluation of current mucin histochemical stains. Br J Biomed Sci. 2003;60:180–6.

    Article  CAS  PubMed  Google Scholar 

  4. Jass JR, Filipe MI. The mucin profiles of normal gastric mucosa, intestinal metaplasia and its variants and gastric carcinoma. Histochem J. 1981;13:913–39.

    Article  Google Scholar 

  5. McFadden DE, Owen DA, Reid PE, Jones EA. The histochemical assessment of sulphated and non-sulphated sialomucin in intestinal epithelium. Histopathology. 1985;9:1129–37.

    Article  CAS  PubMed  Google Scholar 

  6. Yamada K. Dual staining of some sulfated mucopolysaccharides with alcian blue (pH1.0) and ruthenium red (pH 2.5). Histochemie. 1970;23:13–20.

    Article  CAS  PubMed  Google Scholar 

  7. Baracchini P, Fulcheri E, Lapertosa G. Patterns of intestinal metaplasia in gastric biopsies. A comparison of different histochemical classifications. Histochem J. 2005;23:1–9.

    Article  Google Scholar 

  8. Shaheen NJ, Falk GW, Iyer PG, et al. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am J Gastroenterol. 2016;111:30–50.

    Article  CAS  PubMed  Google Scholar 

  9. Younes M, Ertan A, Ergun G, et al. Goblet cell mimickers in esophageal biopsies are not associated with an increased risk for dysplasia. Arch Pathol Lab Med. 2007;131:571–5.

    Article  PubMed  Google Scholar 

  10. Peuchmaur M, Potet F, Goldfain D. Mucin histochemistry of the columnar epithelium of the oesophagus (Barrett’s oesophagus): a prospective biopsy study. J Clin Pathol. 1984;37:607–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen YY, Wang HH, Antonioli DA, et al. Significance of acid mucin-positive non goblet columnar cells in the distal esophagus and gastroesophageal junction. Hum Pathol. 1999;30:1488–95.

    Article  CAS  PubMed  Google Scholar 

  12. Koenig M, Schofield JB, Warren BF, Shepherd NA. The routine use of histochemical stains in gastrointestinal pathology: a UK-wide survey. Histopathology. 2009;55:214–7.

    Article  PubMed  Google Scholar 

  13. Wright CL, Kelly JK. The use of routine special stains for upper gastrointestinal biopsies. Am J Surg Pathol. 2006;30:357–61.

    Article  PubMed  Google Scholar 

  14. Chen ZE, Lin F. Application of immunohistochemistry in gastrointestinal and liver neoplasms: new markers and evolving practice. Arch Pathol Lab Med. 2015;139:14–23.

    Article  PubMed  Google Scholar 

  15. Wang HL, Kim CJ, Koo J, Zhou W, Choi EK, Arcega R, Chen ZE, Wang H, Zhang L, Lin F. Practical immunohistochemistry in neoplastic pathology of the gastrointestinal tract, liver, biliary tract, and pancreas. Arch Pathol Lab Med. 2017;141:1155–80.

    Google Scholar 

  16. Adsay V, Jang KT, Roa JC, Dursun N, Ohike N, Bagci P, Basturk O, Bandyopadhyay S, Cheng JD, Sarmiento JM, Escalona OT, Goodman M, Kong SY, Terry P. Intracholecystic papillary-tubular neoplasms (ICPN) of the gallbladder (neoplastic polyps, adenomas, and papillary neoplasms that are ≥1.0 cm): clinicopathologic and immunohistochemical analysis of 123 cases. Am J Surg Pathol. 2012;36:1279–301.

    Article  PubMed  Google Scholar 

  17. Hahn HP, Blount PL, Ayub K, et al. Intestinal differentiation in metaplastic, nongoblet columnar epithelium in the esophagus. Am J Surg Pathol. 2009;33:1006–15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McIntire MG, Soucy G, Vaughan TL, et al. MUC2 is a highly specific marker of goblet cell metaplasia in the distal esophagus and gastroesophageal junction. Am J Surg Pathol. 2011;35:1007–13.

    Article  PubMed  Google Scholar 

  19. Brown IS, Whiteman DC, Lauwers GY. Foveolar type dysplasia in Barrett esophagus. Mod Pathol. 2010;23:834–43.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Westerhoff M, Hart J. Expression of SOX9 and CDX2 in nongoblet columnar-lined esophagus predicts the detection of Barrett’s esophagus during follow-up. Mod Pathol. 2015;28:654–61.

    Article  CAS  PubMed  Google Scholar 

  21. Couvelard A, Cauvin JM, Goldfain D, et al. Cytokeratin immunoreactivity of intestinal metaplasia at normal esophagogastric junction indicates its etiology. Gut. 2001;49:761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vieth M, Kushima R, Mukaisho K, Sakai R, Kasami T, Hattori T. Immunohistochemical analysis of pyloric gland adenomas using a series of Mucin2, Mucin5AC, Mucin6, CD10, Ki67and p53. Virchows Arch. 2010;457:529–36.

    Article  CAS  PubMed  Google Scholar 

  23. Ma C, Pai RK. Predictive value of immunohistochemistry in pre-malignant lesions of the gastrointestinal tract. Semin Diagn Pathol. 2015;32:334–43.

    Article  PubMed  Google Scholar 

  24. Ruemmele P, Dietmaier W, Terracciano L, et al. Histopathologic features and microsatellite instability of cancers of the papilla of vater and their precursor lesions. Am J Surg Pathol. 2009;33:691–704.

    Article  PubMed  Google Scholar 

  25. Bayrak R, Yenid¨unya S, Haltas H. Cytokeratin 7 and cytokeratin 20 expression in colorectal adenocarcinomas. Pathol Res Pract. 2011;207:156–60.

    Article  CAS  PubMed  Google Scholar 

  26. Taliano RJ, LeGolvan M, Resnick MB. Immunohistochemistry of colorectal carcinoma: current practice and evolving applications. Hum Pathol. 2013;44:151–63.

    Article  CAS  PubMed  Google Scholar 

  27. Lugli A, Tzankov A, Zlobec I, Terracciano LM. Differential diagnostic and functional role of the multi-marker phenotype CDX2/CK20/CK7 in colorectal cancer stratified by mismatch repair status. Mod Pathol. 2008;21:1403–12.

    Article  CAS  PubMed  Google Scholar 

  28. Magnusson K, de Wit M, Brennan DJ, et al. SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 2011;35:937–48.

    Article  PubMed  Google Scholar 

  29. Lin F, Shi J, Zhu S, et al. Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Pathol Lab Med. 2014;138:1015–26.

    Article  PubMed  Google Scholar 

  30. Broede A, Oll M, Maurer A, et al. Differential diagnosis of bladder versus colorectal adenocarcinoma: keratin 7 and GATA3 positivity in nuclear β-catenin negative glandular tumours defines adenocarcinoma of the bladder. J Clin Pathol. 2016;69:307–12.

    Article  CAS  PubMed  Google Scholar 

  31. Kim CJ, Baruch-Oren T, Lin F, Fan XS, Yang XJ, Wang HL. Value of SATB2 immunostaining in the distinction between small intestinal and colorectal adenocarcinomas. J Clin Pathol. 2016;69:1046–50.

    Article  CAS  PubMed  Google Scholar 

  32. Strickland S, Parra-Herran C. Immunohistochemical characterization of appendiceal mucinous neoplasms and the value of special AT-rich sequence-binding protein 2 in their distinction from primary ovarian mucinous tumours. Histopathology. 2016;68:977–87.

    Article  PubMed  Google Scholar 

  33. Vang R, Gown AM, Barry TS, et al. Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol. 2006;30:1130–9.

    Article  PubMed  Google Scholar 

  34. Sorbye H, Welin S, Langer SW, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24:152–60.

    Article  CAS  PubMed  Google Scholar 

  35. Miettinen M, Wang ZF, Lasota J. DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am J Surg Pathol. 2009;33:1401–8.

    Article  PubMed  Google Scholar 

  36. Turner MS, Goldsmith JD. Best practices in diagnostic immunohistochemistry: spindle cell neoplasms of the gastrointestinal tract. Arch Pathol Lab Med. 2009;133:1370–4.

    Article  PubMed  Google Scholar 

  37. Espinosa I, Lee CH, Kim MK, et al. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol. 2008;32(2):210–8.

    Article  PubMed  Google Scholar 

  38. Kang GH, Srivastava A, Kim YE, et al. DOG1 and PKC-θ are useful in the diagnosis of KIT-negative gastrointestinal stromal tumors. Mod Pathol. 2011;24:866–75.

    Article  CAS  PubMed  Google Scholar 

  39. Miettinen M, Lasota J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs): a review. Int J Biochem Cell Biol. 2014;53:514–9.

    Article  CAS  PubMed  Google Scholar 

  40. Boland JM, Folpe AL. Oncocytic variant of malignant gastrointestinal neuroectodermal tumor: a potential diagnostic pitfall. Hum Pathol. 2016;57:13–6.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao M, Sun L, Lai JZ, Shi H, Mei K, He X, Jin X, Lai J, Cao D. Expression of RNA-binding protein LIN28 in classic gastric hepatoid carcinomas, gastric fetal type gastrointestinal adenocarcinomas, and hepatocellular carcinomas: an immunohistochemical study with comparison to SALL4, alpha-fetoprotein, glypican-3, and Hep Par1. Pathol Res Pract. 2018;214(10):1707–12.

    Article  CAS  PubMed  Google Scholar 

  42. Kaye PV, Ilyas M, Soomro I, et al. Dysplasia in Barrett’s Oesophagus: p53 immunostaining is more reproducible then H&E diagnosis and improves overall reliability while grading is poorly reproducible. Histopathology. 2016;69:431–40.

    Article  PubMed  Google Scholar 

  43. Kastelein F, Biermann K, Steyerberg EW, et al. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett’s oesophagus. Gut. 2013;62:1676–83.

    Article  CAS  PubMed  Google Scholar 

  44. Bani-Hani K, Martin IG, Hardie LJ, et al. Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst. 2000;92:1316–21.

    Article  CAS  PubMed  Google Scholar 

  45. Sonwalkar SA, Rotimi O, Scott N, et al. A study of indefinite for dysplasia in Barrett’s oesophagus: reproducibility of diagnosis, clinical outcomes and predicting progression with AMACR (alphamethylacyl-CoA-racemase). Histopathology. 2010;56:900–7.

    Article  PubMed  Google Scholar 

  46. Lu D, Vohra P, Chu PG, et al. An oncofetal protein IMP3: a new molecular marker for the detection of esophageal adenocarcinoma and high-grade dysplasia. Am J Surg Pathol. 2009;33:521–5.

    Article  PubMed  Google Scholar 

  47. van Olphen S, Biermann K, Spaander MC, et al. SOX2 as a novel marker to predict neoplastic progression in Barrett’s esophagus. Am J Gastroenterol. 2015;110:1420–8.

    Article  PubMed  Google Scholar 

  48. Patil DT, Shadrach BL, Rybicki LA, Leach BH, Pai RK. Proximal colon cancers and the serrated pathway: a systematic analysis of precursor histology and BRAF mutation status. Mod Pathol. 2012;25:1423–31.

    Article  CAS  PubMed  Google Scholar 

  49. Walsh MD, Buchanan DD, Pearson SA, et al. Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: a case series from the Australasian site of the colon cancer family registry. Mod Pathol. 2012;25:722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Schaik FD, Oldenburg B, Offerhaus GJ, et al. Role of immunohistochemical markers in predicting progression of dysplasia to advanced neoplasia in patients with ulcerative colitis. Inflamm Bowel Dis. 2012;18:480–8.

    Article  PubMed  Google Scholar 

  51. Marx A, Wandrey T, Simon P, et al. Combined alpha-methylacyl coenzyme A racemase/p53 analysis to identify dysplasia in inflammatory bowel disease. Hum Pathol. 2009;40:166–73.

    Article  CAS  PubMed  Google Scholar 

  52. Xie H, Xiao SY, Pai R, et al. Diagnostic utility of TP53 and cytokeratin 7 immunohistochemistry in idiopathic inflammatory bowel disease-associated neoplasia. Mod Pathol. 2014;27:303–13.

    Article  CAS  PubMed  Google Scholar 

  53. Walts AE, Lechago J, Bose S. P16 and Ki67 immunostaining is a useful adjunct in the assessment of biopsies for HPV associated anal intraepithelial neoplasia. Am J Surg Pathol. 2006;30:795–801.

    Article  PubMed  Google Scholar 

  54. Bernard JE, Butler MO, Sandweiss L, Weidner N. Anal intra- epithelial neoplasia: correlation of grade with p16INK4a immunohistochemistry and HPV in situ hybridization. Appl Immunohistochem Mol Morphol. 2008;16:215–20.

    Article  CAS  PubMed  Google Scholar 

  55. Darragh TM, Colgan TJ, Cox JT, et al. The lower anogenital squamous terminology standardization project for HPV associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Arch Pathol Lab Med. 2012;136:1266–97.

    Article  PubMed  Google Scholar 

  56. Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62. quiz 263

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xue Y, Farris AB, Quigley B, Krasinskas A. The impact of new technologic and molecular advances in the daily practice of gastrointestinal and hepatobiliary pathology. Arch Pathol Lab Med. 2017;141:517–27.

    Article  CAS  PubMed  Google Scholar 

  58. Shia J. Evolving approach and clinical significance of detecting DNA mismatch repair deficiency in colorectal carcinoma. Semin Diagn Pathol. 2015;32:352–61.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Patil DT, Ma S, Konishi M, Carver PD, Pukay M, Beadling C, Corless CL, Rubin BP. Utility of BRAF V600E mutation-specific immunohistochemistry in detecting BRAF V600E-mutated gastrointestinal stromal tumors. Am J Clin Pathol. 2015;144:782–9.

    Article  CAS  PubMed  Google Scholar 

  60. Curry JL, Torres-Cabala CA, Tetzlaff MT, et al. Molecular platforms utilized to detect BRAF V600E mutation in melanoma. Semin Cutan Med Surg. 2012;31:267–73.

    Article  CAS  PubMed  Google Scholar 

  61. Roth RM, Hampel H, Arnold CA, Yearsley MM, Marsh WL, Frankel WL. A modified Lynch syndrome screening algorithm in colon cancer: BRAF immunohistochemistry is efficacious and cost beneficial. Am J Clin Pathol. 2015;143:336–43.

    Article  CAS  PubMed  Google Scholar 

  62. Mesteri I, Bayer G, Meyer J, et al. Improved molecular classification of serrated lesions of the colon by immunohistochemical detection of BRAFV600E. Mod Pathol. 2014;27:135–44.

    Article  CAS  PubMed  Google Scholar 

  63. Kuan SF, Navina S, Cressman KL, Pai RK. Immunohistochemical detection of BRAF V600E mutant protein using the VE1 antibody in colorectal carcinoma is highly concordant with molecular testing but requires rigorous antibody optimization. Hum Pathol. 2014;45:464–72.

    Article  CAS  PubMed  Google Scholar 

  64. Radu OM, Nikiforova MN, Farkas LM, Krasinskas AM. Challenging cases encountered in colorectal cancer screening for Lynch syndrome reveal novel findings: nucleolar MSH6 staining and impact of prior chemoradiation therapy. Hum Pathol. 2011;42:1247–58.

    Article  PubMed  Google Scholar 

  65. Shia J, Zhang L, Shike M, et al. Secondary mutation in a coding mononucleotide tract in MSH6 causes loss of immunoexpression of MSH6 in colorectal carcinomas with MLH1/PMS2 deficiency. Mod Pathol. 2013;26:131–8.

    Article  CAS  PubMed  Google Scholar 

  66. Hagen CE, Lefferts J, Hornick JL, Srivastava A. “Null pattern” of immunoreactivity in a Lynch syndrome-associated colon cancer due to germline MSH2 mutation and somatic MLH1 hypermethylation. Am J Surg Pathol. 2011;35:1902–5.

    Article  PubMed  Google Scholar 

  67. Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol. 2012;3:153–73.

    PubMed  PubMed Central  Google Scholar 

  68. Bellizzi AM. Contributions of molecular analysis to the diagnosis and treatment of gastrointestinal neoplasms. Semin Diagn Pathol. 2013;30:329–61.

    Article  PubMed  Google Scholar 

  69. Bartley AN, Christ J, Fitzgibbons PL, et al. Template for reporting results of HER2 (ERBB2) biomarker testing of specimens from patients with adenocarcinoma of the stomach or esophagogastric junction. Arch Pathol Lab Med. 2015;139:618–20.

    Article  CAS  PubMed  Google Scholar 

  70. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    Article  CAS  PubMed  Google Scholar 

  71. Bang YJ. Advances in the management of HER2-positive advanced gastric and gastroesophageal junction cancer. J Clin Gastroenterol. 2012;46(8):637–48.

    Article  CAS  PubMed  Google Scholar 

  72. Bartley AN, Washington MK, Ventura CB, et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med. 2016;140:1345–63.

    Article  PubMed  Google Scholar 

  73. Jain P, Goyal S, Chauhan G, Majumdar K, Ali S, Sakhuja P, Agarwal AK. HER-2/neu over expression in gall bladder adenocarcinoma: a quest for potential therapeutic target. Indian J Pathol Microbiol. 2020;63:214–20.

    Article  PubMed  Google Scholar 

  74. Fassan M, Mastracci L, Grillo F, et al. Early HER2 dysregulation in gastric and oesophageal carcinogenesis. Histopathology. 2012;61:769–76.

    Article  PubMed  Google Scholar 

  75. Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol. 2006;23:70–83.

    Article  PubMed  Google Scholar 

  76. Agaimy A, Terracciano LM, Dirnhofer S, et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol. 2009;62:613–6.

    Article  CAS  PubMed  Google Scholar 

  77. Kim JW, Eder JP. Prospects for targeting PD-1 and PD-L1 in various tumor types. Oncology. 2014;28:15–28.

    CAS  PubMed  Google Scholar 

  78. Liu S, Gӧnen M, Stadler ZK, Weiser MR, Hechtman JF, Vakiani E, Wang T, Vyas M, Joneja U, Al-Bayati M, Segal NH, Smith JJ, King S, Guercio S, Ntiamoah P, Markowitz AJ, Zhang L, Cercek A, Garcia-Aguilar J, Saltz LB, Diaz LA, Klimstra DS, Shia J. Cellular localization of PD-L1 expression in mismatch-repair-deficient and proficient colorectal carcinomas. Mod Pathol. 2019;32:110–21.

    Article  CAS  PubMed  Google Scholar 

  79. Oliveira AF, Bretes L, Furtado I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Front Oncol. 2019;9:396.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, Burge M, O'Neil B, Kavan P, Yoshino T, Guimbaud R, Taniguchi H, Elez E, Al-Batran SE, Boland PM, Crocenzi T, Atreya CE, Cui Y, Dai T, Marinello P, Diaz LA Jr, André T. Phase II open-label study of Pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38:11–9.

    Article  CAS  PubMed  Google Scholar 

  82. Hemmer PR, Topazian MD, Gertz MA, Abraham SC. Globular amyloid deposits isolated to the small bowel: a rare association with AL amyloidosis. Am J Surg Pathol. 2007;31:141–5.

    Article  PubMed  Google Scholar 

  83. Gencosmanoglu R, Sen-Oran E, Kurtkaya-Yapicier O, Tozun N. Xanthelasmas of the upper gastrointestinal tract. J Gastroenterol. 2004;39:215–9.

    Article  PubMed  Google Scholar 

  84. Hallegua DS, Wallace DJ. Gastrointestinal manifestations of systemic lupus erythematosus. Curr Opin Rheum. 2000;12:379–85.

    Article  CAS  Google Scholar 

  85. Spoelstra-de Man AM, Wagenaar SS, van der Sluys VA, Brouwer CB. Relationship between pernicious anemia and gastric neuroendocrine cell disorders. Neth J Med. 2000;56:56–62.

    Article  CAS  PubMed  Google Scholar 

  86. Batts KP, Ketover S, Kakar S, Krasinskas AM, Mitchell KA, Wilcox R, Westerhoff M, Rank J, Gibson J, Mattia AR, Cummings OW, Davison JM, Naini BV, Dry SM, Yantiss RK, Haggitt RC. Gastrointestinal Pathology Society. Appropriate use of special stains for identifying Helicobacter pylori: Recommendations from the Rodger C. Haggitt Gastrointestinal Pathology Society. Am J Surg Pathol. 2013;37:e12–22.

    Google Scholar 

  87. Pajares JM, Gisbert JP. Helicobacter pylori: its discovery and relevance for medicine. Rev Esp Enferm Dig. 2006;98:770–85.

    Article  CAS  PubMed  Google Scholar 

  88. Smith SB, Snow AN, Perry RL, et al. Helicobacter pylori: to stain or not to stain? Am J Clin Pathol. 2012;137:733–8.

    Article  PubMed  Google Scholar 

  89. Young DG. A stain for demonstrating Helicobacter pylori in gastric biopsies. Biotechnic Histochem. 2001;76:31–4.

    Article  CAS  Google Scholar 

  90. Doglioni C, Turrin M, Macri E, Chiarelli C, Germana B, Barbareschi M. HpSS: a new silver staining method for Helicobacter pylori. J Clin Pathol. 1997;50:461–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. El-Zimaity HM. Modified triple stain (carbol fuchsin/alcian blue/hematoxylin-eosin) for the identification of Helicobacter pylori. Arch Pathol Lab Med. 2000;124:1416–7.

    Article  CAS  PubMed  Google Scholar 

  92. Genta RM, Robason GO, Graham DY. Simultaneous visualization of Helicobacter pylori and gastric morphology: a new stain. Hum Pathol. 1994;25:221–6.

    Article  CAS  PubMed  Google Scholar 

  93. Makristathis A, Hirschl AM, Mégraud F, Bessède E. Review: diagnosis of Helicobacter pylori infection. Helicobacter. 2019;24 Suppl 1:e12641.

    PubMed  Google Scholar 

  94. Heilman KL, Borchard F. Gastritis due to spiral shaped bacteria other than Helicobacter pylori: clinical, histological and ultrastructural findings. Gut. 1991;32:137–40.

    Article  Google Scholar 

  95. Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple's disease. N Engl J Med. 1992;327:293–301.

    Article  CAS  PubMed  Google Scholar 

  96. Swartz MN. Whipple's disease — past, present, and future. N Engl J Med. 2000;342:648–50.

    Article  CAS  PubMed  Google Scholar 

  97. Alsaigh N, Fogt F. Intestinal spirochetosis: clinicopathological features with review of the literature. Color Dis. 2002;4:97–100.

    Article  CAS  Google Scholar 

  98. Field AS. Light microscopic and electron microscopic diagnosis of gastrointestinal opportunistic infections in HIV-positive patients. Pathology. 2002;34:21–35.

    Google Scholar 

  99. Orenstein JM, Chiang J, Steinberg W, et al. Intestinal microsporidiosis as a cause of diarrhoea in HIV-infected patients: a report of 20 cases. Hum Pathol. 1990;21:481–92.

    Google Scholar 

  100. Eberhard ML, Pienazek NJ, Arrowood MJ. Laboratory diagnosis of cyclospora infections. Arch Pathol Lab Med. 1997;121:792–7.

    CAS  PubMed  Google Scholar 

  101. Weidner AS, Panarelli NC, Rennert H, Jessurun J, Yantiss RK. Immunohistochemistry improves the detection of adenovirus in gastrointestinal biopsy specimens from hematopoietic stem cell transplant recipients. Am J Clin Pathol. 2016;146:627–31.

    Article  CAS  PubMed  Google Scholar 

  102. Ambelil M, Saulino DM, Ertan A, DuPont AW, Younes M. The significance of so-called equivocal Immunohistochemical staining for cytomegalovirus in colorectal biopsies. Arch Pathol Lab Med. 2019;143:985–9.

    Article  CAS  PubMed  Google Scholar 

  103. Zidar N, Ferkolj I, Tepeˇs K, et al. Diagnosing cytomegalovirus in patients with inflammatory bowel disease—by immunohistochemistry or polymerase chain reaction? Virchows Arch. 2015;466:533–9.

    Article  CAS  PubMed  Google Scholar 

  104. Yan Z, Wang L, Dennis J, Doern C, Baker J, Park JY. Clinical significance of isolated cytomegalovirus-infected gastrointestinal cells. Int J Surg Pathol. 2014;22:492–8.

    Article  PubMed  Google Scholar 

  105. Tse JY, Chan MP, Ferry JA, Deshpande V, Sohani AR, Nardi V, Schaffer A, Nazarian RM, Zukerberg LR. Syphilis of the Aerodigestive tract. Am J Surg Pathol. 2018;42:472–8.

    Google Scholar 

  106. Martin-Ezquerra G, Fernandez-Casado A, Barco D, et al. Treponema pallidum distribution patterns in mucocutaneous lesions of primary and secondary syphilis: an immunohistochemical and ultrastructural study. Hum Pathol. 2009;40:624–30.

    Article  CAS  PubMed  Google Scholar 

  107. Ruiz SJ, Procop GW. Cross-reactivity of anti-treponema immunohistochemistry with non-treponema spirochetes: a simple call for caution. Arch Pathol Lab Med. 2016;140:1021–2.

    Article  PubMed  Google Scholar 

  108. Comin CE, Santucci M. Submicroscopic profile of Isospora belli enteritis in a patient with AIDS. Ultrastruct Pathol. 1994;18:473–82.

    Article  CAS  PubMed  Google Scholar 

  109. Mari M, Hofman V, Butori C, Ilie M, Lassalle S, Grier P, Sadoulet D, Scoazec JY, Hofman P. What is new in 2010 for electron microscopy in surgical pathology? Ann Pathol. 2010;30:263–72.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yi ES, Powell HC. Adenovirus infection of the duodenum in an AIDS patient: an ultrastructural study. Ultrastruct Pathol. 1994;18:549–51.

    Article  CAS  PubMed  Google Scholar 

  111. Orenstein JM. Hyperplastic lymphoid tissue in HIV/AIDS: an electron microscopic study. Ultrastruct Pathol. 2008;32:161–9.

    Google Scholar 

  112. Marsh MN, Johnson MW, Rostami K. Mucosal histopathology in celiac disease: a rebuttal of Oberhuber's sub-division of Marsh III. Gastroenterol Hepatol Bed Bench. 2015;8:99–109.

    Google Scholar 

  113. Goswami P, Das P, Verma AK, Prakash S, Das TK, Nag TC, Ahuja V, Gupta SD, Makharia GK. Are alterations of tight junctions at molecular and ultrastructural level different in duodenal biopsies of patients with celiac disease and Crohn's disease? Virchows Arch. 2014;465:521–30.

    Article  CAS  PubMed  Google Scholar 

  114. VanDussen KL, Stojmirović A, Li K, Liu TC, Kimes PK, Muegge BD, Simpson KF, Ciorba MA, Perrigoue JG, Friedman JR, Towne JE, Head RD, Stappenbeck TS. Abnormal small intestinal epithelial microvilli in patients with Crohn's disease. Gastroenterology. 2018;155:815–28.

    Article  PubMed  Google Scholar 

  115. Knowles KJ, Al-Delfi F, Abdulsattar J, Lacour R, Black D, Chaudhery S, Turbat-Herrera EA. Malignant granular cell tumors: the role of electron microscopy in the definitive diagnosis of an extremely aggressive soft tissue neoplasm. Ultrastruct Pathol. 2018;42:304–11.

    Article  PubMed  Google Scholar 

  116. Kim NR, Ha SY, Cho HY. Utility of transmission electron microscopy in small round cell tumors. J Pathol Transl Med. 2015;49:93–101.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclaimer

The authors agree to the fact that all biopsy procedures and surgical resections were performed after taking informed consent from respective patients as per the individual Institutional policies, which also includes consent for publishing the unidentified clinical images for publication or research purposes. The authors also declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Sakhuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, K., Sakhuja, P. (2022). Diagnostic Special Stains, Immunohistochemical Markers, and Special Techniques Used in Gastrointestinal Tract Pathology. In: Das, P., Majumdar, K., Datta Gupta, S. (eds) Surgical Pathology of the Gastrointestinal System. Springer, Singapore. https://doi.org/10.1007/978-981-16-6395-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6395-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6394-9

  • Online ISBN: 978-981-16-6395-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics