Skip to main content

Molecular Classifications of Gastrointestinal Tract Tumors

  • Chapter
  • First Online:
Surgical Pathology of the Gastrointestinal System

Abstract

Gastrointestinal malignancies are increasing in most parts of the world. Gradually the distinctions of incidence and demography of these malignancies between the western world and Asian countries are becoming blurred. The molecular phenotype of almost all gastrointestinal tract epithelial malignancies has now been characterized and performing molecular characterization has become standard in many of them. The molecular characterization of these tumors has evolved over the last few decades, resulting in multiple confusing and overlapping classifications. This chapter was planned to address this issue on all epithelial gastrointestinal tract malignancies and discuss and formulate the up-to-date molecular classification and describe the clinical and therapeutic benefits of doing so. This endeavor in this book supplemented with unique diagrams will help the readers to develop a solid concept in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Esophageal Carcinoma

  1. Testa U, Castelli G, Pelosi E. Esophageal cancer: genomic and molecular characterization, stem cell compartment and clonal evolution. Med (Basel, Switzerland) [Internet]. 2017 Sep 14 [cited 2018 Dec 27];4(3). Available from.: http://www.ncbi.nlm.nih.gov/pubmed/28930282.

  2. Talukdar FR, di Pietro M, Secrier M, Moehler M, Goepfert K, Lima SSC, et al. Molecular landscape of esophageal cancer: implications for early detection and personalized therapy. Ann N Y Acad Sci [Internet]. 2018 Dec 19 [cited 2018 Dec 27];1434(1):342–59. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/29917250.

  3. Samarasam I. Esophageal cancer in India: Current status and future perspectives. Int J Adv Med Heal Res [Internet]. 2017 [cited 2018 Dec 27];4(1):5–10. Available from: http://www.ijamhrjournal.org/text.asp?2017/4/1/5/209126.

  4. Cherian JV, Sivaraman R, Muthusamy AK, Jayanthi V. Carcinoma of the esophagus in Tamil Nadu (South India): 16-year trends from a tertiary center. J Gastrointestin Liver Dis [Internet]. 2007 Sep [cited 2019 Jan 2];16(3):245–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17925916.

  5. Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet (London, England) [Internet]. 2017 Nov 25 [cited 2019 Jan 2];390(10110):2383–96. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/28648400.

  6. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, et al. Oesophageal cancer. Nat Rev Dis Prim [Internet]. 2017; Jul 27 [cited 2019 Jan 2];3:17048. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28748917

  7. Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol [Internet]. 2007 Jan [cited 2019 Jan 2];17(1):2–9. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/17185192.

  8. Wang K, Johnson A, Ali SM, Klempner SJ, Bekaii-Saab T, Vacirca JL, et al. Comprehensive genomic profiling of advanced esophageal squamous cell carcinomas and esophageal adenocarcinomas reveals similarities and differences. Oncologist [Internet]. 2015 Oct 1 [cited 2018 Dec 27];20(10):1132–9. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/26336083.

  9. Cancer Genome Atlas Research Network, Analysis Working Group: Asan University, BC Cancer Agency, Brigham and Women’s Hospital, Broad Institute, Brown University, et al. Integrated genomic characterization of oesophageal carcinoma. Nature [Internet]. 2017 Jan 4 [cited 2019 Jan 3];541(7636):169–75. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/28052061.

  10. Contino G, Vaughan TL, Whiteman D, Fitzgerald RC. The evolving genomic landscape of Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology [Internet]. 2017 Sep [cited 2019 Jan 5];153(3):657–673.e1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28716721.

  11. Sawada G, Niida A, Uchi R, Hirata H, Shimamura T, Suzuki Y, et al. Genomic landscape of esophageal squamous cell carcinoma in a Japanese population. Gastroenterology [Internet]. 2016 May [cited 2019 Jan 6];150(5):1171–82. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/26873401.

  12. Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H, Aoyagi K, et al. NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia [Internet]. 2011 Sep [cited 2019 Jan 6];13(9):864–73. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/21969819.

  13. Motohashi H, Yamamoto M. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med [Internet]. 2004 Nov [cited 2019 Jan 6];10(11):549–57. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/15519281.

  14. Zhang L, Zhou Y, Cheng C, Cui H, Cheng L, Kong P, et al. Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am J Hum Genet [Internet] 2015 Apr 2 [cited 2019 Jan 15];96(4):597–611. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25839328.

  15. Lin D-C, Hao J-J, Nagata Y, Xu L, Shang L, Meng X, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet [Internet]. 2014 May 30 [cited 2019 Jan 15];46(5):467–73. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/24686850.

  16. Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet [Internet] 2013 May 24 [cited 2019 Jan 15];45(5):478–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23525077.

  17. Salem ME, Puccini A, Xiu J, Raghavan D, Lenz H, Korn WM, et al. Comparative molecular analyses of esophageal squamous cell carcinoma, esophageal adenocarcinoma, and gastric adenocarcinoma. Oncologist [Internet]. 2018 Nov [cited 2018 Dec 27];23(11):1319–27. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/29866946.

  18. Kaz AM, Grady WM, Stachler MD, Bass AJ. Genetic and epigenetic alterations in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin North Am [Internet]. 2015 Jun [cited 2019 Jan 15];44(2):473–89. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/26021206.

  19. Kalatskaya I. Overview of major molecular alterations during progression from Barrett’s esophagus to esophageal adenocarcinoma. Ann N Y Acad Sci [Internet]. 2016 Oct [cited 2019 Jan 15];1381(1):74–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27415609.

  20. Abdo J, Agrawal DK, Mittal SK. “Targeted” chemotherapy for esophageal cancer. Front Oncol [Internet]. 2017 [cited 2019 Jan 15];7:63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28421164.

Gastric Carcinoma

  1. Fitzmaurice C, Dicker D, Pain A, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1:505–27.

    PubMed  Google Scholar 

  2. Fontana E, Smyth EC. Novel targets in the treatment of advanced gastric cancer: a perspective review. Ther Adv Med Oncol. 2016;8(2):113–25. https://doi.org/10.1177/1758834015616935. Review. PubMed PMID: 26929787; PubMed Central PMCID: PMC4753351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garattini SK, Basile D, Cattaneo M, Fanotto V, Ongaro E, Bonotto M, Negri FV, Berenato R, Ermacora P, Cardellino GG, Giovannoni M, Pella N, Scartozzi M, Antonuzzo L, Silvestris N, Fasola G, Aprile G. Molecular classifications of gastric cancers: novel insights and possible future applications. World J Gastrointest Oncol. 2017;9(5):194–208. https://doi.org/10.4251/wjgo.v9.i5.194. Review. PubMed PMID: 28567184; PubMed Central PMCID: PMC5434387.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shah MA, Kelsen DP. Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease. J Natl Compr Cancer Netw. 2010;8:437–47.

    CAS  Google Scholar 

  5. Colvin H, Yamamoto K, Wada N, Mori M. Hereditary gastric cancer syndromes. Surg Oncol Clin N Am. 2015;24:765–77.

    PubMed  Google Scholar 

  6. Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12:354–62.

    PubMed  PubMed Central  Google Scholar 

  7. Ladeiras-Lopes R, Pereira A, Nogueira A, Pinheiro-Torres T, Pinto I, Santos-Pereira R, Lunet N. Smoking and gastric cancer: systemic review and meta-analysis of cohort studies. Cancer Causes Control. 2008;19:689–701.

    PubMed  Google Scholar 

  8. Yang P, Zhou Y, Chen B, Wan HW, Jia GQ, Bai HL, Wu XT. Overweight, obesity and gastric cancer risk: results from a meta-analysis of cohort studies. Eur J Cancer. 2009;45:2867–73.

    PubMed  Google Scholar 

  9. Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015;16:e60–70.

    PubMed  Google Scholar 

  10. Cisło M, Filip AA, Arnold Offerhaus GJ, Ciseł B, Rawicz-Pruszyński K,Skierucha M, Polkowski WP. Distinct molecular subtypes of gastric cancer: from Laurén to molecular pathology. Oncotarget. 2018;9(27):19427–42. https://doi.org/10.18632/oncotarget.24827. eCollection 2018 Apr 10. Review. PubMed PMID:29721214; PubMed Central PMCID: PMC5922408.

  11. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    CAS  PubMed  Google Scholar 

  12. Bosman FT, Carneiro F, Hruban RH, Thiese ND. WHO classification of tumors of the digestive system. 4th ed. Lyon: IARC; 2010. p. 44–58.

    Google Scholar 

  13. Martin IG, Dixon MF, Sue-Ling H, Axon AT, Johnston D. Goseki histological grading of gastric cancer is an important predictor of outcome. Gut. 1994;35(6):758–63. PubMed PMID: 8020800; PubMed Central PMCID: PMC1374873.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Berlth F, Bollschweiler E, Drebber U, Hoelscher AH, Moenig S. Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. World J Gastroenterol. 2014;20:5679–84.

    PubMed  PubMed Central  Google Scholar 

  15. Katona BW, Rustgi AK. Gastric cancer genomics: advances and future directions. Cell Mol Gastroenterol Hepatol. 2017;3(2):211–7. https://doi.org/10.1016/j.jcmgh.2017.01.003. eCollection 2017 Mar. Review. PubMed PMID: 28275688; PubMed Central PMCID: PMC5331775.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cunningham D, Tebbutt N, Davidenko I, Murad A, Al-Batran S, Ilson D, et al. Phase III, randomized, double-blind, multicenter, placebo (P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced MET-positive (pos) gastric or gastroesophageal junction (G/GEJ) cancer: RILOMET-1 study. J Clin Oncol. 2015;33:4000.

    Google Scholar 

  17. Ychou M, Boige V, Pignon J, Conroy T, Bouché O, Lebreton G, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol. 2011;29:1715–21.

    CAS  PubMed  Google Scholar 

  18. Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev. 2014;24:68–73.

    CAS  PubMed  Google Scholar 

  19. Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Merker SR, Weitz J, Stange DE. Gastrointestinal organoids: how they gut it out. Dev Biol. 2016;420:239–50.

    CAS  PubMed  Google Scholar 

  21. Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, Seoane JA, Farshidfar F, Bowlby R, Islam M, Kim J, Chatila W, Akbani R, Kanchi RS, Rabkin CS, Willis JE, Wang KK, McCall SJ, Mishra L, Ojesina AI, Bullman S, Pedamallu CS, Lazar AJ, Sakai R; Cancer Genome Atlas Research Network, Thorsson V, Bass AJ, Laird PW. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell. 2018;33(4):721–35.e8. https://doi.org/10.1016/j.ccell.2018.03.010. Epub 2018 Apr 2. PubMed PMID: 29622466; PubMed Central PMCID: PMC5966039.

  22. Kankeu Fonkoua L, Yee NS. Molecular characterization of gastric carcinoma: therapeutic implications for biomarkers and targets. Biomedicines. 2018;6(1). pii: E32. https://doi.org/10.3390/biomedicines6010032. Review. PubMed PMID: 29522457; PubMed Central PMCID: PMC5874689.

  23. Sunakawa Y, Lenz HJ. Molecular classification of gastric adenocarcinoma: translating new insights from the cancer genome atlas research network. Curr Treat Options in Oncol. 2015;16(4):17. https://doi.org/10.1007/s11864-015-0331-y. Review. PubMed PMID: 25813036.

    Article  Google Scholar 

  24. Fuchs CS, Doi T, Woo-Jun Jang R, Muro K, Satoh T, Machado M. KEYNOTE-059 cohort 1: efficacy and safety of pembrolizumab (pembro) monotherapy in patients with previously treated advanced gastric cancer. J Clin Oncol. 2017;35(Suppl. 15):4003.

    Google Scholar 

  25. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9. https://doi.org/10.1038/nature13480. Epub 2014 Jul 23. PubMed PMID: 25079317; PubMed Central PMCID: PMC4170219.

    Article  CAS  Google Scholar 

  26. Wilke H, Muro K, Van Cutsem E, Oh S, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–35.

    CAS  PubMed  Google Scholar 

  27. Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, Chua C, Feng Z, Guan YK, Ooi CH, Ivanova T, Zhang S, Lee M, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 2013;145:554–65.

    CAS  PubMed  Google Scholar 

  28. Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.

    CAS  PubMed  Google Scholar 

  29. Birkman EM, Mansuri N, Kurki S, Ålgars A, Lintunen M, Ristamäki R, Sundström J, Carpén O. Gastric cancer: immunohistochemical classification of molecular subtypes and their association with clinicopathological characteristics. Virchows Arch. 2018;472(3):369–82. https://doi.org/10.1007/s00428-017-2240-x. Epub 2017 Oct 19. PubMed PMID: 29046940; PubMed Central PMCID: PMC5886993.

    Article  CAS  PubMed  Google Scholar 

  30. Geddert H, Zur Hausen A, Gabbert HE, et al. EBV infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1. Anal Cell Pathol (Amst). 2010;33:143–9.

    CAS  Google Scholar 

  31. Matsusaka K, Kaneda A, Nagae G, et al. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res. 2011;71:7187–97.

    CAS  PubMed  Google Scholar 

  32. Pedrazzani C, Corso G, Velho S, Leite M, Pascale V, Bettarini F, Marrelli D, Seruca R, Roviello F. Evidence of tumor microsatellite instability in gastric cancer with familial aggregation. Fam Cancer. 2009;8:215–20. PMID: 19152022. https://doi.org/10.1007/s10689-008-9231-7.

  33. Velho S, Fernandes MS, Leite M, Figueiredo C, Seruca R. Causes and consequences of microsatellite instability in gastric carcinogenesis. World J Gastroenterol 2014;20:16433–42. PMID: 25469011. https://doi.org/10.3748/wjg.v20.i44.16433.

  34. Oki E, et al. Chemosensitivity and survival in gastric cancer patients with microsatellite instability. Ann Surg Oncol. 2009;16:2510–5.

    PubMed  Google Scholar 

  35. Choi YY, et al. Is microsatellite instability a prognostic marker in gastric cancer? A systematic review with meta-analysis. J Surg Oncol. 2014;110:129–35.

    PubMed  Google Scholar 

  36. Shen L, Li J, Xu J, Pan H, Dai G, Qin S, Wang L, Wang J, Yang Z, Shu Y, Xu R, Chen L, Liu Y, Yu S, Bu L, Piao Y. Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastroesophageal junction cancer: randomized, double-blind, phase III study (AVATAR study). Gastric Cancer. 2015;18:168–76. PMID: 24557418. https://doi.org/10.1007/s10120-014-0351-5.

  37. Chen T, Xu XY, Zhou PH. Emerging molecular classifications and therapeutic implications for gastric cancer. Chin J Cancer. 2016;35:49. https://doi.org/10.1186/s40880-016-0111-5. Review. PubMed PMID: 27233623; PubMed Central PMCID: PMC4896142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Meltzer SJ. Gastric cancer in the era of precision medicine. Cell Mol Gastroenterol Hepatol. 2017;3(3):348–58. https://doi.org/10.1016/j.jcmgh.2017.02.003. eCollection 2017 May. Review. PubMed PMID: 28462377; PubMed Central PMCID: PMC5404028.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cho J, Chang YH, Heo YJ, Kim S, Kim NK, Park JO, Kang WK, Lee J, Kim KM. Four distinct immune microenvironment subtypes in gastric adenocarcinoma with special reference to microsatellite instability. ESMO Open. 2018;3(3):e000326. https://doi.org/10.1136/esmoopen-2018-000326. eCollection 2018. PubMed PMID: 29636988; PubMed Central PMCID: PMC5890063.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388:2654–64.

    PubMed  Google Scholar 

  41. Hansford S, Kaurah P, Li-Chang H, et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1:23–32.

    PubMed  Google Scholar 

  42. Wang K, Kan J, Yuen ST, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011;43:1219–23.

    CAS  PubMed  Google Scholar 

  43. Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44:570–4.

    CAS  PubMed  Google Scholar 

  44. Kakiuchi M, Nishizawa T, Ueda H, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46:583–7.

    CAS  PubMed  Google Scholar 

  45. Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    CAS  PubMed  Google Scholar 

  46. Li X, Wu WK, Xing R, et al. Distinct subtypes of gastric cancer defined by molecular characterization include novel mutational signatures with prognostic capability. Cancer Res. 2016;76:1724–32.

    CAS  PubMed  Google Scholar 

  47. Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–26.

    CAS  PubMed  Google Scholar 

  48. Kim TM, Park PJ. A genome-wide view of microsatellite instability: old stories of cancer mutations revisited with new sequencing technologies. Cancer Res. 2014;74:6377–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mori Y, Yin J, Rashid A, et al. Instabilotyping comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res. 2001;61:6046–9.

    CAS  PubMed  Google Scholar 

  50. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:1302.

    Google Scholar 

  51. Shitara K, Ohtsu A. Advances in systemic therapy for metastatic or advanced gastric cancer. J Natl Compr Cancer Netw. 2016;14:1313–20.

    CAS  Google Scholar 

  52. Becerra C, Stephenson J, Jonker DJ, et al. Phase Ib/II study of cancer stem cell (CSC) inhibitor BBI608 combined with paclitaxel in advanced gastric and gastroesophageal junction (GEJ) adenocarcinoma. J Clin Oncol. 2015;33(suppl; abstr 4069).

    Google Scholar 

  53. Ang YL, Yong WP, Tan P. Translating gastric cancer genomics into targeted therapies. Crit Rev Oncol Hematol. 2016;100:141–6.

    PubMed  Google Scholar 

  54. Lee J, Bass AJ, Ajani JA. Gastric adenocarcinoma: an update on genomics, immune system modulations, and targeted therapy. Am Soc Clin Oncol Educ Book. 2016;35:104–11.

    PubMed  Google Scholar 

  55. Tarazona N, Gambardella V, Huerta M, Roselló S, Cervantes A. Personalised treatment in gastric cancer: myth or reality? Curr Oncol Rep. 2016;18:41.

    PubMed  Google Scholar 

  56. Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, Lim HY, Yamada Y, Wu J, Langer B, Starnawski M, Kang YK. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol. 2011;29:3968–76.

    CAS  PubMed  Google Scholar 

  57. Sung JK. Diagnosis and management of gastric dysplasia. Korean J Intern Med. 2016;31:201–9.

    PubMed  PubMed Central  Google Scholar 

  58. Marqués-Lespier JM, González-Pons M, Cruz-Correa M. Current perspectives on gastric cancer. Gastroenterol Clin N Am. 2016;45:413–28.

    Google Scholar 

  59. Li K, Li J. Current molecular targeted therapy in advanced gastric cancer: a comprehensive review of therapeutic mechanism, clinical trials, and practical application. Gastroenterol Res Pract. 2016;2016:4105615.

    PubMed  PubMed Central  Google Scholar 

  60. Gu L, Chen M, Guo D, Zhu H, Zhang W, Pan J, Zhong X, Li X, Qian H, Wang X. PD-L1 and gastric cancer prognosis: a systematic review and meta-analysis. PLoS One. 2017;12:e0182692.

    PubMed  PubMed Central  Google Scholar 

  61. Böger C, Behrens HM, Mathiak M, Krüger S, Kalthoff H, Röcken C. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget. 2016;7:24269–83.

    PubMed  PubMed Central  Google Scholar 

Small Intestinal Carcinoma

  1. Haan JC, Buffart TE, Eijk PP, et al. Small bowel adenocarcinoma copy number profiles are more closely related to colorectal than to gastric cancers. Ann Oncol. 2012;23(2):367–74.

    CAS  PubMed  Google Scholar 

  2. Aparicio T, Svrcek M, Zaanan A, et al. Small bowel adenocarcinoma phenotyping, a clinicobiological prognostic study. Br J Cancer. 2013;109(12):3057–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. He J, Ahuja N. Personalized approaches to gastrointestinal cancers: importance of integrating genomic information to guide therapy. Surg Clin N Am. 2015;95:1081–94.

    PubMed  Google Scholar 

  4. Schrock AB, Devoe CE, McWilliams R, Sun J, Aparicio T, Stephens PJ, Ross JS, Wilson R, Miller VA, Ali SM, Overman MJ. Genomic profiling of small-bowel adenocarcinoma. JAMA Oncol. 2017;3(11):1546–53.

    PubMed  PubMed Central  Google Scholar 

  5. Alvi MA, McArt DG, Kelly P, et al. Comprehensive molecular pathology analysis of small bowel adenocarcinoma reveals novel targets with potential for clinical utility. Oncotarget. 2015;6(25):20863–74.

    PubMed  PubMed Central  Google Scholar 

  6. Laforest A, Aparicio T, Zaanan A, et al. ERBB2 gene as a potential therapeutic target in small bowel adenocarcinoma. Eur J Cancer. 2014;50(10):1740–6.

    CAS  PubMed  Google Scholar 

  7. Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Santini D, Fratto ME, Spoto C, et al. Cetuximab in small bowel adenocarcinoma: a new friend? Br J Cancer. 2010;103(8):1305.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rankin A, Klempner SJ, Erlich R, et al. Broad detection of alterations predicted to confer lack of benefit from EGFR antibodies or sensitivity to targeted therapy in advanced colorectal cancer. Oncologist. 2016;21:1306–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xue Y, Farris AB, Quigley B, Krasinskas A. The impact of new technologic and molecular advances in the daily practice of gastrointestinal and hepatobiliary pathology. Arch Pathol Lab Med. 2017;141:517–27.

    CAS  PubMed  Google Scholar 

  11. Maguire A, Sheahan K. Primary small bowel adenomas and adenocarcinomas- recent advances. Virchows Arch. 2018;473(3):265–73.

    PubMed  Google Scholar 

  12. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Overman MJ, Hu C-Y, Wolff RA, Chang GJ. Prognostic value of lymph node evaluation in small bowel adenocarcinoma: analysis of the surveillance, epidemiology, and end results database. Cancer. 2010;116(23):5374–82.

    PubMed  Google Scholar 

  14. Yaeger R, Shah MA, Miller VA, et al. Genomic alterations observed in colitis-associated cancers are distinct from those found in sporadic colorectal cancers and vary by type of inflammatory bowel disease. Gastroenterology. 2016;151(2):278–287.e6.

    CAS  PubMed  Google Scholar 

Colorectal Carcinoma

  1. Sirohi B, Shrikhande SV, Perakath B, Raghunandharao D, Julka PK, Lele V, Chaturvedi A, Nandakumar A, Ramadwar M, Bhatia V, Mittal R. Indian Council of Medical Research consensus document for the management of colorectal cancer. Indian J Med Paediatr Oncol. 2014;35(3):192.

    PubMed  PubMed Central  Google Scholar 

  2. Rodriguez-Salas N, Dominguez G, Barderas R, Mendiola M, García-Albéniz X, Maurel J, Batlle JF. Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol Hematol. 2017;109:9–19.

    PubMed  Google Scholar 

  3. Souglakos J, Philips J, Wang R, et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer. 2009;101:465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dattatreya S. Metastatic colorectal cancer-prolonging overall survival with targeted therapies. South Asian J Cancer. 2013;2(3):179.

    PubMed  PubMed Central  Google Scholar 

  5. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138(6):2059–72.

    CAS  PubMed  Google Scholar 

  6. Ionov Y, Peinado MA, Malkhosyan S, et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61.

    CAS  PubMed  Google Scholar 

  7. Mäkinen MJ, George SM, Jernvall P, Mäkelä J, Vihko P, Karttunen TJ. Colorectal carcinoma associated with serrated adenoma–prevalence, histological features, and prognosis. J Pathol. 2001;193(3):286–94.

    PubMed  Google Scholar 

  8. Hamilton SR. Carcinoma of the colon and rectum. World health organization classification of tumors. Pathology and genetics of tumors of the digestive system. 2000. p. 105–19.

    Google Scholar 

  9. Snover D, Ahnen DJ, Burt RW. Serrated polyps of the colon and rectum and serrated (“hyperplastic”) polyposis. In: Bozman FT, Carneiro F, Hruban RH, et al, editors. WHO classification of tumours of the digestive system. 2010:160–5.

    Google Scholar 

  10. Conteduca V, Sansonno D, Russi S, et al. precancerous colorectal lesions. Int J Oncol. 2013;43:973–84.

    CAS  PubMed  Google Scholar 

  11. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  12. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    CAS  PubMed  Google Scholar 

  13. Vargas-Rondón N, Villegas VE, Rondón-Lagos M. The role of chromosomal instability in cancer and therapeutic responses. Cancers. 2017;10(1):4.

    PubMed Central  Google Scholar 

  14. Swanton C, Marani M, Pardo O, Warne PH, Kelly G, Sahai E, Elustondo F, Chang J, Temple J, Ahmed AA, Brenton JD. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell. 2007;11(6):498–512.

    CAS  PubMed  Google Scholar 

  15. Müller MF, Ibrahim AE, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016;469(2):125–34.

    PubMed  PubMed Central  Google Scholar 

  16. Ibrahim AE, Arends MJ, Silva AL, Wyllie AH, Greger L, Ito Y, Vowler SL, Huang TH, Tavaré S, Murrell A, Brenton JD. Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression. Gut. 2010;60(4):499–508.

    PubMed  Google Scholar 

  17. Boland CR, Koi M, Chang DK, Carethers JM. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch syndrome: from bench to bedside. Familial Cancer. 2008;7(1):41–52.

    CAS  PubMed  Google Scholar 

  18. Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998;58(15):3455–60.

    CAS  PubMed  Google Scholar 

  19. Gay LJ, Arends MJ, Mitrou PN, Bowman R, Ibrahim AE, Happerfield L, Luben R, McTaggart A, Ball RY, Rodwell SA. MLH1 promoter methylation, diet, and lifestyle factors in mismatch repair deficient colorectal cancer patients from EPIC-Norfolk. Nutr Cancer. 2011;63(7):1000–10.

    CAS  PubMed  Google Scholar 

  20. Poulogiannis G, Frayling IM, Arends MJ. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology. 2010;56(2):167–79.

    PubMed  Google Scholar 

  21. Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 2009;11(1):42.

    PubMed  PubMed Central  Google Scholar 

  22. Klingbiel D, Saridaki Z, Roth AD, Bosman FT, Delorenzi M, Tejpar S. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann Oncol. 2015;26(1):126–32.

    CAS  PubMed  Google Scholar 

  23. Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(12):686.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002 Jan;196(1):1–7.

    CAS  PubMed  Google Scholar 

  25. Hughes LA, Khalid-de Bakker CA, Smits KM, van den Brandt PA, Jonkers D, Ahuja N, Herman JG, Weijenberg MP, van Engeland M. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochimica et Biophysica Acta (BBA)-reviews on. Cancer. 2012;1825(1):77–85.

    CAS  Google Scholar 

  26. Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):29–39.

    CAS  PubMed  Google Scholar 

  27. Grady WM. CIMP and colon cancer gets more complicated. Gut. 2007;56(11):1498–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaneda A, Yagi K. Two groups of DNA methylation markers to classify colorectal cancer into three epigenotypes. Cancer Sci. 2011;102(1):18–24.

    CAS  PubMed  Google Scholar 

  29. Lee S, Cho NY, Yoo EJ, Kim JH, Kang GH. CpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels. Arch Pathol Lab Med. 2008;132(10):1657–65.

    CAS  PubMed  Google Scholar 

  30. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787.

    CAS  PubMed  Google Scholar 

  31. Ang PW, Loh M, Liem N, Lim PL, Grieu F, Vaithilingam A, Platell C, Yong WP, Iacopetta B, Soong R. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer. 2010;10(1):227.

    PubMed  PubMed Central  Google Scholar 

  32. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X, Ahmed S, Konishi K, Hamilton SR. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci. 2007;104(47):18654–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bae JM, Kim JH, Kang GH. Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway. Arch Pathol Lab Med. 2016;140(5):406–12.

    CAS  PubMed  Google Scholar 

  34. Bae JM, Kim MJ, Kim JH, Koh JM, Cho NY, Kim TY, Kang GH. Differential clinicopathological features in microsatellite instability-positive colorectal cancers depending on CIMP status. Virchows Arch. 2011;459(1):55–63.

    PubMed  Google Scholar 

  35. Slattery ML, Curtin K, Sweeney C, Levin TR, Potter J, Wolff RK, Albertsen H, Samowitz WS. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int J Cancer. 2007;120(3):656–63.

    CAS  PubMed  Google Scholar 

  36. Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 2008;10(1):13–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonzalez RS, Washington K, Shi C. Current applications of molecular pathology in colorectal carcinoma. Appl Cancer Res. 2017;37(1):13.

    Google Scholar 

  38. Jass JR. Hyperplastic polyps and colorectal cancer: is there a link? 1. Clin Gastroenterol Hepatol. 2004;2(1):1–8.

    PubMed  Google Scholar 

  39. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50(1):113–30.

    CAS  PubMed  Google Scholar 

  40. Ward RL, Cheong K, Ku SL, Meagher A, O’Connor T, Hawkins NJ. Adverse prognostic effect of methylation in colorectal cancer is reversed by microsatellite instability. J Clin Oncol. 2003;21(20):3729–36.

    CAS  PubMed  Google Scholar 

  41. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330.

    Google Scholar 

  42. Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Thanki K, Nicholls ME, Gajjar A, Senagore AJ, Qiu S, Szabo C, Hellmich MR, Chao C. Consensus molecular subtypes of colorectal cancer and their clinical implications. Int Biol Biomed J. 2017;3(3):105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. National Comprehensive Cancer Network. Clinical practice guidelines in oncology (NCCN guidelines) colon cancer. version 2.2016. 2016.

    Google Scholar 

  45. Alwers E, Jia M, Kloor M, Bläker H, Brenner H, Hoffmeister M. Associations between molecular classifications of colorectal cancer and patient survival: a systematic review. Clin Gastroenterol Hepatol. 2018;17(3):402–410.e2.

    PubMed  Google Scholar 

  46. Dienstmann R, Mason MJ, Sinicrope FA, Phipps AI, Tejpar S, Nesbakken A, Danielsen SA, Sveen A, Buchanan DD, Clendenning M, Rosty C. Prediction of overall survival in stage II and III colon cancer beyond TNM system: a retrospective, pooled biomarker study. Ann Oncol. 2017;28(5):1023–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Trinh A, Trumpi K, Melo FD, Wang X, De Jong JH, Fessler E, Kuppen PJ, Reimers MS, Swets M, Koopman M, Nagtegaal ID. Practical and robust identification of molecular subtypes in colorectal cancer by immunohistochemistry. Clin Cancer Res. 2016;23(2):387–98.

    PubMed  Google Scholar 

Download references

Disclaimer

The authors agree to the fact that all biopsy procedures and surgical resections were performed after taking informed consent from respective patients as per the individual Institutional policies, which also includes consent for publishing the unidentified clinical images for publication or research purposes. The authors also declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rastogi, A., Bihari, C., Patil, A.G., Majumdar, K., Das, P. (2022). Molecular Classifications of Gastrointestinal Tract Tumors. In: Das, P., Majumdar, K., Datta Gupta, S. (eds) Surgical Pathology of the Gastrointestinal System. Springer, Singapore. https://doi.org/10.1007/978-981-16-6395-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6395-6_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6394-9

  • Online ISBN: 978-981-16-6395-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics