Skip to main content

Magnetostrictive Tactile Sensor Array for Robotic Grasping

  • Conference paper
  • First Online:
Proceedings of 2021 Chinese Intelligent Automation Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 801))

  • 1322 Accesses

Abstract

Tactile sensors play a significant role in robotic grasping. This study compares the output characteristics of magnetostrictive sensor array and TakkTile sensor array which is a commercial product. Magnetostrictive sensor unit is composed of Galfenol wires, permanent magnets, Hall elements, bottom fixture and contact pad. Multiple magnetostrictive tactile sensors are integrated on the flexible printed circuit board to form a 3 × 3 magnetostrictive sensor array. The sensitivity of magnetostrictive sensor array is 48.47 mV/N, which is up to 380% higher than minimum value of the commercial sensor array. The recovery time is only 10 ms, 86.7% faster. Quantity available on ReFlex finger is twice the latter. By comparing the results of grasping experiments with the two types of sensor array, magnetostrictive sensor array exhibits simpler structure, smaller temperature drift and more accurate force measurement. Experimental results show that magnetostrictive sensor array can improve the result of robotic grasping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharjee, T., Clever, H.M., Wade, J., Kemp, C.: Multimodal tactile perception of objects in a real home. IEEE Robot. Autom. Lett. 3(3), 2523–2530 (2018)

    Article  Google Scholar 

  2. Dahiya, R.S., Metta, G., Valle, M., et al.: Tactile sensing—from humans to humanoids. IEEE Trans. Robot 26(1), 1–20 (2010)

    Article  Google Scholar 

  3. Tiwana, M.I., Redmond, S.J., Lovell, N.H.: A review of tactile sensing technologies with applications in biomedical engineering. Sensors 15(4) (2015)

    Google Scholar 

  4. Feneberg, M., Thonke, K., Wunderer, T., et al.: Piezoelectric polarization of semipolar and polar GaInN quantum wells grown on strained GaN templates. J. Appl. Phys. 107(10), 103517-1–103517-6 (2010)

    Google Scholar 

  5. Willatzen, M., Lassen, B., Voon, L.C.L.Y., et al.: Dynamic coupling of piezoelectric effects, spontaneous polarization, and strain in lattice-mismatched semiconductor quantum-well heterostructures. J. Appl. Phys. 100(2), 024302-1–024302-6 (2006)

    Google Scholar 

  6. Paola, S., Emiliano, S., Calogero, O., et al.: Microfabricated tactile sensors for biomedical applications: a review. Biosensors 4(4), 422–448 (2014)

    Article  Google Scholar 

  7. Kumar, K.R., Narayanan, S.: Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs. Smart Mater. Struct. 17(5), 055008 (2008)

    Google Scholar 

  8. Doll, J.C., Park, S.J., Pruitt, B.L.: Design optimization of piezoresistive cantilevers for force sensing in air and water. J. Appl. Phys. 106(6), 064310-1–064310-12 (2009)

    Google Scholar 

  9. Wan, L.L., Wang, B.W., Wang, Q.L., et al.: The output characteristic of cantilever-like tactile sensor based on the inverse magnetostrictive effect. AIP Adv. 7, 056805 (2017)

    Google Scholar 

  10. Rezaeealam, B., Ueno, T., Yamada, S.: Finite element analysis of galfenol unimorph vibration energy harvester. IEEE Trans. Magn. 18(11), 3977–3980 (2012)

    Google Scholar 

  11. Wang, L., Wang, B.-W., Wang, Z.-H., Weng, L., Huang, W.-M., Zhou, Y.: Magneto-thermo-mechanical characterization of giant magnetostrictive materials. Rare Met. 32(5), 486–489 (2013). https://doi.org/10.1007/s12598-013-0133-y

    Article  Google Scholar 

  12. Deng, Z.X.: Nonlinear modeling and characterization of the Villari effect and model-guided development of magnetostrictive energy harvesters and dampers. Ph.D. dissertation, The Ohio State University, Columbus, OH, USA (2015)

    Google Scholar 

  13. Li, Y.K., Wang, B.W., Li, Y.Y., et al.: Design and output characteristics of magnetostrictive tactile sensor for detecting force and stiffness of manipulated objects. IEEE Trans. Ind. Inform. 15(2), 1219–1224 (2019)

    Article  Google Scholar 

  14. Zhang, B., Wang, B.W., et al.: Magnetostrictive tactile sensor array for object recognition. IEEE Trans. Magn. 55(7), 1–7 (2019)

    Google Scholar 

  15. Tenzer, Y., Jentoft, L., Howe, R.: The feel of mems barometers: inexpensive and easily customized tactile array sensors. Robot. Autom. Mag. 21(3), 89–95 (2014)

    Article  Google Scholar 

  16. Gao, S., Weng, L., Deng, Z., et al.: Biomimetic tactile sensor array based on magnetostrictive materials (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Wang, B., Gao, S., Liu, S., Zhang, Y., Weng, L. (2022). Magnetostrictive Tactile Sensor Array for Robotic Grasping. In: Deng, Z. (eds) Proceedings of 2021 Chinese Intelligent Automation Conference. Lecture Notes in Electrical Engineering, vol 801. Springer, Singapore. https://doi.org/10.1007/978-981-16-6372-7_65

Download citation

Publish with us

Policies and ethics