Skip to main content

Unsupervised Learning for Wafer Surface Defect Pattern Recognition

  • Conference paper
  • First Online:
Proceedings of 2021 Chinese Intelligent Automation Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 801))

  • 1369 Accesses

Abstract

With the development of the semiconductor industry, the demand for wafer production has gradually increased. Wafer manufacturing is a very complicated process, and any abnormal fluctuations in each process in this process may cause surface defects on the wafer. Accurate and rapid identification of wafer defect patterns can promptly reflect abnormal problems in the production process. Aiming at such tasks, this paper proposes a pattern recognition method for wafer surface defects based on unsupervised learning. The method is divided into two parts: unsupervised pre-training and classification fine-tuning. In the unsupervised pre-training stage, in order to improve the model’s surface defect feature extraction capability, we propose a new wafer-oriented unsupervised sampling method (WaUSM). Our wafer surface defect pattern recognition method uses an unsupervised pre-training model as the initialization to set up a classification model downstream, and fine-tune the classification model through a small number of label images with wafer defect patterns, so that the classification model can more accurately identify various types of defects pattern. The method we proposed was successfully verified by wafer defect pattern recognition on the public dataset WM-811K, and the experimental results fully proved the effectiveness and industrial applicability of the method we proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, J., Lu, X.: Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis. IEEE Trans. Semicond. Manuf. 29(1), 33–43 (2015)

    Article  Google Scholar 

  2. Friedman, D.J., Hansen, M.H., Nair, V.N., James, D.A.: Model-free estimation of defect clustering in integrated circuit fabrication. IEEE Trans. Semicond. Manuf. 10(3), 344–359 (1997)

    Article  Google Scholar 

  3. Zhao, W., Wang, W.: SeizureNet: a model for robust detection of epileptic seizures based on convolutional neural network. Cogn. Comput. Syst. 2(3), 119–124 (2020)

    Article  Google Scholar 

  4. Zhou, J., Jia, X., Shen, L., Wen, Z., Ming, Z.: Improved softmax loss for deep learning-based face and expression recognition. Cogn. Comput. Syst. 1(4), 97–102 (2019)

    Article  Google Scholar 

  5. Liu, X., Yin, J.: Stacked residual blocks based encoder-decoder framework for human motion prediction. Cogn. Comput. Syst. 2(4), 242–246 (2020)

    Article  Google Scholar 

  6. Hu, D., Luo, Z., Zhao, L.: Gender identification based on human brain structural MRI with a multi-layer 3D convolution extreme learning machine. Cogn. Comput. Syst. 1(4), 91–96 (2019)

    Article  Google Scholar 

  7. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  8. Wang, F., Liu, H., Guo, D., Sun, F.: Unsupervised representation learning by invariancepropagation. arXiv preprint arXiv:2010.11694 (2020)

  9. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using temporal order verification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 527–544. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_32

    Chapter  Google Scholar 

  10. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  11. Zhang, R., Isola, P., Efros, A.A.: Split-brain autoencoders: unsupervised learning by cross-channel prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1058–1067 (2017)

    Google Scholar 

  12. Li, D., Hung, W.-C., Huang, J.-B., Wang, S., Ahuja, N., Yang, M.-H.: Unsupervised visual representation learning by graph-based consistent constraints. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 678–694. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_41

    Chapter  Google Scholar 

  13. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. arXiv preprint arXiv:2012.09740 (2020)

  14. Li, X., Liu, H., Zhou, J., Sun, F.: Learning cross-modal visual-tactile representation using ensembled generative adversarial networks. Cogn. Comput. Syst. 1(2), 40–44 (2019)

    Article  Google Scholar 

  15. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  16. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  17. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  18. Chang, C.Y., Li, C.H., Chang, Y.C., Jeng, M.: Wafer defect inspection by neural analysis of region features. J. Intell. Manuf. 22(6), 953–964 (2011)

    Article  Google Scholar 

  19. Chen, F.L., Liu, S.F.: A neural-network approach to recognize defect spatial pattern in semiconductor fabrication. IEEE Trans. Semicond. Manuf. 13(3), 366–373 (2000)

    Article  Google Scholar 

  20. Chen, J., Hsu, C.J., Chen, C.C.: A self-growing hidden Markov tree for wafer map inspection. J. Process Control 19(2), 261–271 (2009)

    Article  MathSciNet  Google Scholar 

  21. Cunningham, S.P., Mackinnon, S.: Statistical methods for visual defect metrology. IEEE Trans. Semicond. Manuf. 11(1), 48–53 (1998)

    Article  Google Scholar 

  22. Kim, J., Lee, Y., Kim, H.: Detection and clustering of mixed-type defect patterns in wafer bin maps. Iise Trans. 50(2), 99–111 (2018)

    Article  Google Scholar 

  23. Wang, C.H.: Recognition of semiconductor defect patterns using spatial filtering and spectral clustering. Expert Syst. Appl. 34(3), 1914–1923 (2008)

    Article  Google Scholar 

  24. Wang, C.H.: Separation of composite defect patterns on wafer bin map using support vector clustering. Expert Syst. Appl. 36(2), 2554–2561 (2009)

    Article  Google Scholar 

  25. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  26. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  27. Wu, M.J., Jang, J.S.R., Chen, J.L.: Wafer map failure pattern recognition and similarity ranking for large-scale data sets. IEEE Trans. Semicond. Manuf. 28(1), 1–12 (2014)

    Google Scholar 

  28. Chien, J.C., Wu, M.T., Lee, J.D.: Inspection and classification of semiconductor wafer surface defects using CNN deep learning networks. Appl. Sci. 10(15), 5340 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Liu .

Editor information

Editors and Affiliations

A Appendix

A Appendix

(See Figs. 4 and 5).

Fig. 4.
figure 4

In order to solve the problem of unbalanced data categories in WM-811K, we use five different data enhancement methods in the experiment.

Fig. 5.
figure 5

The accuracy and loss of the model in the training phase and the verification phase

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geng, S., Liu, H., Wang, F., Zhao, S., Liu, H. (2022). Unsupervised Learning for Wafer Surface Defect Pattern Recognition. In: Deng, Z. (eds) Proceedings of 2021 Chinese Intelligent Automation Conference. Lecture Notes in Electrical Engineering, vol 801. Springer, Singapore. https://doi.org/10.1007/978-981-16-6372-7_32

Download citation

Publish with us

Policies and ethics