Skip to main content

A Method for Stabilization of Ground Robot Path Controlled by Airborne Autopilot with Time Delay

  • Conference paper
  • First Online:
Functional Differential Equations and Applications (FDEA 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 379))

  • 445 Accesses

Abstract

The paper addresses the problem of visual navigation of ground robots using a camera positioned at a certain elevation above the confined area. Also, the methods of the stability theory of delay differential equations are used in the study of an actual engineering problem of a ground robot autonomous path. We give a description of autopilot for the stabilization of the ground robot autonomous motion according to desirable path. Indeed, large time delay exists in obtaining by autopilot current information about robot position and orientation, because of big data processing by vision-based (visual) navigation system. Despite this fact, we can prove that autopilot can guarantee a stable desirable path. We demonstrate how to create an appropriate controlling signal for the described information time delay and calculate control parameters for case of polygonal chain path. This path consists of linear motion along with line segments and rotations in vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domoshnitsky, A., Fridman, E.: A positivity-based approach to delay-dependent stability of systems with large time-varying delays. Elsevier J. Syst. Control Lett. 97 (2016). https://www.sciencedirect.com/science/article/pii/S0167691116301384?via%3Dihub

  2. Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer (2011)

    Google Scholar 

  3. Agarwal, R.P., Domoshnitsky, A., Maghakyan, A.: On exponential stability of second order delay differential equations. Czechoslovak Math. J. 65(140), 1047–1068 (2015). https://link.springer.com/article/10.1007%2Fs10587-015-0227-9

  4. Domoshnitsky, A.: Nonoscillation, maximum principles, and exponential stability of second order delay differential equations without damping term. J. Inequalities Appl. 2014, 361 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Domoshnitsky, A., Maghakyan, A., Berezansky, L.: W-transform for exponential stability of second order delay differential equations without damping terms. J. Inequal. Appl.

    Google Scholar 

  6. Domoshnitsky, A., Kupervasser, O., Kutomanov, H.: A positivity-based approach to delay-dependent stability of systems of second order equations. In: AIP Conference Proceedings, Vol. 2159(1), p. 030009

    Google Scholar 

  7. Avasker S., Domoshnitsky A., Kogan M., Kupervasser O., Kutomanov H., Rofsov Y., Volinsky I., Yavich R.: Autopilot to maintain movement of a drone in a vertical plane at a constant height in the presence of vision-based navigation" or " A method for stabilization of drone flight controlled by autopilot with time delay. http://vixra.org/pdf/1901.0063v3.pdf

  8. Samoilov, L.K.: Classical Method of the Account of Influence Time Delays of Signals in Devices of Control Systems. Izvestiya SFedU. Eng. Sci. N 4(177), 40–49 (2016). http://old.izv-tn.tti.sfedu.ru/?p=22284&lang=en

  9. Krushel’, E.G., Stepanchenko, I.V.: Informacionnoe zapazdyvanie v cifrovyh sistemah upravlenija, p. 124. VolgGTU, Volgograd, Monograph (2004)

    Google Scholar 

  10. " Control systems, robotics and automation", Vol. II, UK, Eolss Publishers/UNESCO, 2009, Edited by Heinz Unbehauen - Araki M, PID Control

    Google Scholar 

  11. Azbelev, N.V., Simonov, P.M.: Stability of Differential Equations with Aftereffect. Stability and Control: Theory, Methods and Applications. vol. 20. Taylor & Francis, London (2003)

    Google Scholar 

  12. Kupervasser, O., Rubinstein, A.: Correction of inertial navigation on system’s errors by the help of video-based navigator based on digital terrain map. Positioning 4, 89–108. http://file.scirp.org/pdf/POS_2013022811491738.pdf

  13. Kupervasser, O., Lerner, R., Rivlin, E., Rotstein, H.: Error analysis for a navigation algorithm based on optical-flow and a digital terrain map. In: The Proceedings of the 2008 IEEE/ION Position, Location and Navigation Symposium, pp. 1203–1212

    Google Scholar 

  14. Kupervasser, O., Voronov, V.: A navigation filter for fusing DTM/correspondence updates. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO) pp. 1591–1596 (2011)

    Google Scholar 

  15. Lerner, R., Kupervasser, O., Rivlin, E.: Pose and motion from omnidirectional optical flow and a digital terrain map. In: The Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2251–2256

    Google Scholar 

  16. Kupervasser O. Yu., Voronov V.V.: Correction of inertial navigation system’s errors by the help of video-based navigator based on digital terrarium map. In: Presented at XIX ST.-Petersburg International Conference on the Integrated Navigational Systems (MKINS2012)

    Google Scholar 

  17. Lerner, R., Rivlin, E., Rotstein, H.P.: Pose and motion recovery from correspondence and a digital terrain map. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1404–1417 (2006)

    Google Scholar 

  18. Kupervasser, O., Sarychev, V., Rubinstein, A., Yavich, R.: Robust positioning of drones for land use monitoring in strong terrain relief using vision-based navigation. Int. J. Geomate 14(45), 10–15 (2018). https://www.geomatejournal.com/sites/default/files/articles/10-15-7322-Kupervasser-May-2018-g1.pdf

  19. Liu, Y., Rodrigues, M.A.: Statistical image analysis for pose estimation without point correspondences. Pattern Recogn. Lett. 22, 1191–1206 (2001)

    Google Scholar 

  20. David, P., DeMenthon, D., Duraiswami, R., Samet, H.: SoftPOSIT: Simultaneous pose and correspondence determination. ECCV 2002, LNCS 2352, pp. 698–714 (2002). https://link.springer.com/chapter/10.1007/3-540-47977-5_46

  21. Shin, D., Park, S.G., Song, B.S., Kim, E.S., Kupervasser, O., Pivovartchuk, D., Gartseev, I., Antipov, O., Kruchenkov, E., Milovanov, A., Kochetov, A., Sazonov, I., Nogtev, I., Hyun, S.W.: Precision improvement of MEMS gyros for indoor mobile robots with horizontal motion inspired by methods of TRIZ. In: Proceedings of 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS 2014) 13–1 April 2014 ,Hawaii, USA, pp. 102–107 (2014)

    Google Scholar 

  22. Ehrenfeld I., Kogan M., Kupervasser O., Sarychev V., Volinsky I., Yavich R., Zangbi B., Visual navigation for airborne control of ground robots from tethered platform: creation of the first prototype, Proceeding of the IEEE International Conference on New Trends in Engineering and Technology, GRTIET, Tirupathi, Chennai, Tamil Nadu, India, Sept 2018 http://grt.edu.in/news/international-conference-on-new-trends-in-engineering-and-technology-icntet-2018/

  23. Ehrenfeld I., Kupervasser O., Kutomanov H., Sarychev V., Yavich R. " ALGORITHMS DEVELOPED FOR TWO PROTOTYPES OF AIRBORNE VISION-BASED CONTROL OF GROUND ROBOTS", Proceeding of the 9 Conference on GEOMATE 2019, November 2019, Tokyo, Japan http://vixra.org/pdf/1906.0416v1.pdf

  24. Kupervasser O. Yu., Kupervasser Yu. I., Rubinstein A. A., Russian Utility model: Apparatus for Coordinating Automated Devices, Patent ? 131276, Russia, Nov 12, 2012

    Google Scholar 

  25. Kupervasser O.Yu., Kupervasser Yu.I., Rubinstein A.A., German Utility model: Vorrichtng fur Koordinierung automatisierter Vorrichtungen. Patent Nr. 21 2013 000 225, Germany, Jul 10, 2015

    Google Scholar 

  26. Kupervasser O. Yu., Franch Utility model application: Coordination System for Ground Movable Automated Devices. Utility model, publication number 3037157, France, Jun 4, 2016, https://bases-brevets.inpi.fr/en/document-en/FR3037157.html?s=1482862654519&p=5&cHash=1f6f99c78cfb2124b5accb92be338388

  27. Kupervasser O. Yu., Russian Invention: Method for coordinating terrestrial mobile automated devices, Patent N 2691788, Russia, June 5, 2015 https://findpatent.ru/patent/269/2691788.html

  28. Prof. Raul G. Longoria, Turning Kinematically, Spring 2015 https://docplayer.net/31417021-Turning-kinematically.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Kupervasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Domoshnitsky, A., Kupervasser, O., Kutomanov, H., Yavich, R. (2021). A Method for Stabilization of Ground Robot Path Controlled by Airborne Autopilot with Time Delay. In: Domoshnitsky, A., Rasin, A., Padhi, S. (eds) Functional Differential Equations and Applications. FDEA 2019. Springer Proceedings in Mathematics & Statistics, vol 379. Springer, Singapore. https://doi.org/10.1007/978-981-16-6297-3_4

Download citation

Publish with us

Policies and ethics