Skip to main content

Diversity, Chemistry, and Environmental Contamination of Wild Growing Medicinal Mushroom Species as Sources of Biologically Active Substances (Antioxidants, Anti-Diabetics, and AChE Inhibitors)

  • Chapter
  • First Online:
Book cover Biology, Cultivation and Applications of Mushrooms

Abstract

The aim of this chapter is to introduce the main problems in the study of wild growing medicinal mushroom species by presenting the research from the period 2005–2020, with special emphasis on autochthonous species of Serbia and the Balkan region. Four major problems have been discussed regarding identification of the species, their biodiversity, chemical characterization, and environmental contamination, since they represent a great source of bioactive compounds with various activities: antioxidative, antimicrobial, antidiabetic, and anti-AChE inhibition.

The aim of this chapter is to introduce the main problems in the study of wild growing medicinal mushroom species by presenting the research from the period 2005–2020, with special emphasis on autochthonous species of Serbia and the Balkan region.

Four major problems have been discussed regarding identification of the species, their biodiversity, chemical characterization, and environmental contamination, since they represent a great source of bioactive compounds with various activities: antioxidative, antimicrobial, antidiabetic, and anti-AChE inhibition. A proper taxonomic identification is the first step in the further research. The identification is difficult due to similarity of morphological characteristics, especially within species complexes such as Pleurotus and Ganoderma . Molecular identification through multi-gene phylogenetic analysis helped to resolve some of these issues while full genome sequencing enabled annotation of genes, as it was done with Schizophyllum commune and Hericium erinaceus .

Chemical characterization of the secondary bioactive compounds mostly confirmed the existence of terpenoids, phenols, and sterols, while polysaccharides and immunomodulatory proteins including polysaccharide-peptide complexes have been identified recently. Although wild fungal strains represent powerful sources of medicinal substances, they can also pose a potential risk to human health through (hyper) accumulation of toxic elements (e.g. Hg, Pb, Cd, Ni, 238U, and 137Cs) from different substrates, not only in the polluted urban environments, but also in protected natural areas. Their use should be well reasoned and controlled along with their conservation and protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAs:

Amino acids

AAS :

Atomic absorption spectrometry

AChE :

Acetylcholinesterase enzyme

AO:

Antioxidant

aq:

Aqueous extract

B:

Culture broth

BAM:

Biologically active metabolites, bioactive compounds

BCF:

Bioconcentration factor

bw:

Body weight

CYP :

Cytochrome P450

dw:

Dry weight

ESH:

Ergothioneine

ESR:

Electron spin resonance spectroscopy

EtOH:

Ethanolic extract

EU:

European Union

EXP:

Exo-polyasccharide

FA:

Fatty acid

FAO :

Food and Agriculture Organization

FB:

Fruiting body

FFA:

Free FA

FTIR :

Fourier-transform infrared spectroscopy

fw:

Fresh weight

GA:

Ganoderic acid

GC-FID :

Gas chromatography with flame ionization detection

GLT:

G. lucidum triterpenoids

GPx:

Glutathione peroxidase

GT:

Ganoderma triterpenoids

HepG2:

Liver tumor cell line

HER:

H. erinaceus residue

HMW :

High molecular weight

HPLC :

High-performance liquid chromatography

HPLC /MS-MS:

High-performance liquid chromatography with tandem mass spectrometry

HPMC:

Hydroxoperhydroxomercury (II) complex

HSV:

Herpes simplex virus

ITS :

Internal transcribed spacer

LMW :

Low molecular weight

mb:

Megabases

MB:

Mycelial biomass

MCF-7:

Estrogen-dependent breast cancer cell lines

MeOH:

Methanolic extract

MIC :

minimal inhibitory concentration

MM:

Medicinal mushrooms

MRC-5:

Normal cell lines

MUFA:

Monounsaturated

MW:

Molecular weight

PAH:

Polycyclic aromatic hydrocarbon

PCs:

Phenolic compounds

PSH:

Polysaccharides

PSK:

Polysaccharide krestin from T. versicolor

PSP:

Polysaccharopeptide from T. versicolor

PUFA:

Polyunsaturated FA

RDA:

Recommended daily allowance

ROS:

Reactive oxygen species

RSC:

Radical scavenging capacity

SOD:

Superoxide dismutase

SPG:

Schizophyllan

TE:

Trace element

TPC:

Total phenolic content

TRIs:

Triterpenoids

UFA:

Unsaturated FAs

UNSCEAR:

United Nations Scientific Committee on the Effects of Atomic Radiation

WHO:

World Health Organization

References

  • Abd Razak DL, Jamaluddin A, Abd Rashid NY et al (2020) Assessment of cosmeceutical potentials of selected mushroom fruit body extracts through evaluation of antioxidant, anti-hyaluronidase and anti-tyrosinase activity. J Multidiscip Res 3:329–342

    CAS  Google Scholar 

  • Acosta-Urdapilleta ML, Villegas E, Estrada-Torres A et al (2020) Antioxidant activity and proximal chemical composition of FB of mushroom, Pleurotus spp. produced on wheat straw. J Environ Biol 41:1075–1081

    CAS  Google Scholar 

  • Ahmad MF (2018) Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed Pharmacother 107:507–519

    Google Scholar 

  • Alam N, Cha YJ, Shim MJ et al (2010) Cultural conditions for mycelial growth and molecular phylogenetic relationship in different wild strains of Schizophyllum commune. Mycobiology 38:17–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaro M, Castanera R, Lavín JL et al (2016) Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus. Environ Microbiol 18:4710–4726

    CAS  PubMed  Google Scholar 

  • Al-Fatimi M (2001) Isolierung und Charakterisierung antibiotisch wirksamer Verbindungen aus Ganoderma pfeifferi Bres. Und aus Podaxis pistillaris (L.: Pers.) Morse. Dissertation, University of Greifswald, Germany

    Google Scholar 

  • Al-Fatimi M, Wurster M, Lindequist U (2016) Chemical composition, antimicrobial and antioxidant activities of the volatile oil of Ganoderma pfeifferi Bres. Medicines 3:10

    PubMed Central  Google Scholar 

  • Alispahić A, Šapčanin A, Salihović M et al (2015) Phenolic content and antioxidant activity of mushroom extracts from Bosnian market. Bull Chem Technol Bosnia Herzegovina 44:5–8

    Google Scholar 

  • Alonso J, García MA, Pérez-López M, Melgar M (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:0180–0188

    CAS  Google Scholar 

  • Akça S, Sögüt Ö, Küçükönder E, Karatepe S, Dogru M (2014) Radioactivity levels in some mushroom species and consequent doses. Chem Asian J 26:879–882

    Google Scholar 

  • Avin FA, Bhassu S, Tan YS et al (2014) Molecular divergence and species delimitation of the cultivated oyster mushrooms: integration of IGS1 and ITS. Sci World J 2014:793414. https://doi.org/10.1155/2014/793414

    Article  CAS  Google Scholar 

  • Avtonomova AV, Bakanov AV, Shuktueva MI et al (2012) Submerged cultivation and chemical composition of Hericium erinaceus mycelium. Antibiot Khimioter 57:7–11

    CAS  PubMed  Google Scholar 

  • Baby S, Johnson AJ, Govindan B (2015) Secondary metabolites from Ganoderma. Phytochemistry 114:66–101

    CAS  PubMed  Google Scholar 

  • Baeza A, Guillén FJ, Salas A, Manjón JL (2006) Distribution of radionuclides in different parts of a mushroom: influence of the degree of maturity. Sci Total Environ 359:255–266

    CAS  PubMed  Google Scholar 

  • Bano Z, Nagaraja KV, Vibhakar S, Kapur OP (1981) Mineral and heavy metal contents in the sporophores of Pleurotus species. Mushroom Newsl Trop 2:3–6

    Google Scholar 

  • Bao D, Kinugasa S, Kitamoto Y (2004) The biological species of oyster mushrooms (Pleurotus spp.) from Asia based on mating compatibility tests. J Wood Sci 50:162–168

    Google Scholar 

  • Bao D, Aimi T, Kitamoto Y (2005) Cladistic relationships among the Pleurotus ostreatus complex, the Pleurotus pulmonarius complex, and Pleurotus eryngii based on the mitochondrial small subunit ribosomal DNA sequence analysis. J Wood Sci 51:77–82

    CAS  Google Scholar 

  • Berovič M (2019) Cultivation of medicinal mushroom biomass by solid-state bioprocessing in bioreactors. Adv Biochem Eng Biotechnol 169:3. https://doi.org/10.1007/10_2019_89

    Article  CAS  PubMed  Google Scholar 

  • Bishop KS, Kao CHJ, Xu YY et al (2015) From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 114:56–65

    CAS  PubMed  Google Scholar 

  • Boh B, Hodžar D, Dolničar D et al (2000) Isolation and quantification of triterpenoid acids from Ganoderma applanatum of Istrian Origin. Food Technol Biotechnol 38:11–18

    CAS  Google Scholar 

  • Boh B, Berovič M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13:265–301

    Google Scholar 

  • Borovička J, Randa Z (2007) Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Prog 6:249–259

    Google Scholar 

  • Borovicka J, Randa Z, Jelinek E (2005) Gold content of ectomycorrhizal and saprobic macrofungi from non-auriferous and unpolluted areas. Mycol Res 109:951–955

    CAS  PubMed  Google Scholar 

  • Božac R (1984) 600 gljiva naših krajeva. Mladost, Zagreb

    Google Scholar 

  • Brunnert H, Zadrail F (1983) The translocation of mercury and cadmium into the FB of six higher fungi. A comparative study on species specificity in five lignocellulolytic fungi and the cultivated mushroom Agaricus bisporus. Eur J Appl Microbiol Biotechnol 17:358–366

    CAS  Google Scholar 

  • Calmon P, Thiry Y, Zibold G et al (2009) Transfer parameter values in temperate forest ecosystems: a review. J Environ Radioact 100:757–766

    CAS  PubMed  Google Scholar 

  • Cao Y, Wu SH, Dai YC (2012) Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers 56:49–62

    Google Scholar 

  • Cao Y, Xu X, Liu S et al (2018) Ganoderma: a cancer immunotherapy review. Front Pharmacol 9:1217

    Google Scholar 

  • Carlson A, Justo A, Hibbett DS (2017) Species delimitation in Trametes: a comparison of ITS, RPB1, RPB2 and TEF1 gene phylogenies. Mycologia 106:735–745

    Google Scholar 

  • Cen F, Chen L, Hu Y, Xu H (2012) Chelator-induced bioextraction of heavy metals from artificially contaminated soil by mushroom (Coprinus comatus). Chem Ecol 28:267–280

    CAS  Google Scholar 

  • Chaiyasut C, Sivamaruthi BS (2017) Anti-hyperglycemic property of Hericium erinaceus – a mini review. Asian J Trop Biomed 7:1036–1104

    Google Scholar 

  • Chang S, Miles GP (2004) Mushrooms: cultivation, nutritional value, medicinal effects and environmental impact. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chen S, Xu J, Liu C et al (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3:1–9

    CAS  Google Scholar 

  • Chen XQ, Chen LX, Zhao J et al (2017a) Nortriterpenoids from the FB of the mushroom Ganoderma resinaceum. Molecules 22:1073

    PubMed Central  Google Scholar 

  • Chen XQ, Chen LX, Li SP, Zhao J (2017b) Meroterpenoids from the FB of higher fungus Ganoderma resinaceum. Phytochem Lett 22:214–218

    CAS  Google Scholar 

  • Chen XQ, Zhao J, Chen LX et al (2018a) Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase. Phytochemistry 149:103–115

    CAS  PubMed  Google Scholar 

  • Chen XQ, Lin LG, Zhao J et al (2018b) Isolation, structural elucidation, and α-glucosidase inhibitory activities of triterpenoid lactones and their relevant biogenetic constituents from Ganoderma resinaceum. Molecules 23:1391

    PubMed Central  Google Scholar 

  • Chen W, Wu D, Jin Y et al (2020a) Pre-protective effect of polysaccharides purified from Hericium erinaceus against ethanol-induced gastric mucosal injury in rats. Int J Biol Macromol 159:948–956

    CAS  PubMed  Google Scholar 

  • Chen Z, Yin C, Fan X et al (2020b) Characterization of physicochemical and biological properties of Schizophyllum commune polysaccharide extracted with different methods. Int J Biol Macromol 156:1425–1434

    CAS  PubMed  Google Scholar 

  • Choi D, Lee Y, Hong J et al (2012) Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull 87:144–153

    CAS  PubMed  Google Scholar 

  • Ćilerdžić J, Kosanić M, Stajić M et al (2016) Species of genus Ganoderma (Agaricomycetes) fermentation broth: a novel antioxidant and antimicrobial agent. Int J Med Mushrooms 18:397–404

    PubMed  Google Scholar 

  • Cocchi L, Vescovi L, Petrini L, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284

    CAS  Google Scholar 

  • Commission Regulation (EC) (2006a) Setting maximum levels for certain contaminants in foodstuffs. No 1881/2006 of 19, December 2006. Off J Eur Union 364:5e24

    Google Scholar 

  • Commission Regulation (EC) (2006b) No. 1881/2006. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF. Accessed 20 May 2021

  • Commission Regulation (EC) (2008) Amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. No 629/2008 of 2, July 2008. Off J Eur Union 173:6e9

    Google Scholar 

  • Commission Regulation (EC) (2014) Amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. No 488/2014 of 12, May 2014. Off J Eur Union 138:75e79

    Google Scholar 

  • Cör D, Knez Ž, Knez HM (2018) Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review. Molecules 23:649

    PubMed Central  Google Scholar 

  • Costa-Silva F, Marques G, Matos CC et al (2011) Selenium contents of Portuguese commercial and wild edible mushrooms. Food Chem 126:91–96

    CAS  Google Scholar 

  • Cruz A, Pimentel L, Rodríguez-Alcalá LM et al (2016) Health benefits of edible mushrooms focused on Coriolus versicolor: a review. J Food Nutr Res 4:773–781

    CAS  Google Scholar 

  • Cui FJ, Li YH, Zan XY et al (2014) Purification and partial characterization of a novel hemagglutinating glycoprotein from the cultured mycelia of Hericium erinaceus. Process Biochem 49:1362–1369

    CAS  Google Scholar 

  • De Castro LP, Maihara VA, Silva PSC, Figueira RCL (2012) Artificial and natural radioactivity in edible mushrooms from Sao Paulo, Brazil. J Environ Radioact 113:150–154

    PubMed  Google Scholar 

  • Debnath S, Saha KA, Das P (2017) Biological activities of Schizophyllum commune Fr.: a wild edible mushroom of Tripura, North East India. J Mycopathol Res 54:469–475

    Google Scholar 

  • Demirbas A (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457

    CAS  Google Scholar 

  • Deveci E, Çayan F, Tel-Çayan G et al (2019) Structural characterization and determination of biological activities for different polysaccharides extracted from tree mushroom species. J Food Biochem 43:e12965

    PubMed  Google Scholar 

  • Diling C, Chaoqun Z, Jian Y et al (2017) Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut microbiota. Front Immunol 8:666

    PubMed  PubMed Central  Google Scholar 

  • Ding Z, Lu Y, Lu Z et al (2010) Hypoglycemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth on alloxan-induced-diabetic rats. Food Chem 121:39–43

    CAS  Google Scholar 

  • Drewnowska M, Falandysz J, Chudzińska M et al (2017) Leaching of arsenic and sixteen metallic elements from Amanita fulva mushrooms after food processing. LWT Food Sci Technol 84:861–866

    CAS  Google Scholar 

  • Du B, Zeng H, Yang Y et al (2016) Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication. Int J Biol Macromol 91:100–105

    CAS  PubMed  Google Scholar 

  • Du B, Yang Y, Bian Z, Xu B (2017) Characterization and anti-inflammatory potential of and exoplysaccharide from submerged mycelial culture of Schizophyllum commune. Front Pharmacol 8:252

    PubMed  PubMed Central  Google Scholar 

  • Duff M, Ramsey ML (2008) Accumulation of radiocesium by mushrooms in the environment: a literature review. J Environ Radioact 99:912–932

    CAS  PubMed  Google Scholar 

  • Durgo K, Končar M, Komes D et al (2013) Cytotoxicity of blended versus single medicinal mushroom extracts on human cancer cell lines: contribution of polyphenol and polysaccharide content. Int J Med Mushrooms 15:435–448

    CAS  PubMed  Google Scholar 

  • Elisashvili V (2012) Submerged cultivation of medicinal mushrooms: bioprocesses and products (Review). Int J Med Mushrooms 14:211–239

    CAS  PubMed  Google Scholar 

  • Ergönül PG, Akata I, Kalyoncu F, Ergönül B (2013) FA compositions of six wild edible mushroom species. Sci World J 2013:163964. https://doi.org/10.1155/2013/163964

    Article  CAS  Google Scholar 

  • Falandysz J, Borovička J (2012) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501

    PubMed  PubMed Central  Google Scholar 

  • Falandysz J, Saniewski M, Zalewska T, Zhang J (2019) Radiocaesium pollution of fly agaric Amanita muscaria in FB decreases with developmental stage. Isot Environ Health Stud 55:317–324

    CAS  Google Scholar 

  • Falandysz J, Zhang J, Saniewski M, Wang Y (2020) Artificial 137Cs and natural 40K radioactivity and total potassium in medicinal fungi from Yunnan in China. Isot Environ Health Stud 56:324–333

    CAS  Google Scholar 

  • Floudas D, Binder M, Riley R et al (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    CAS  PubMed  Google Scholar 

  • FNB (Food and Nutrition Board, Institute of Medicine, National Academy of Sciences) (2001) Dietary reference intakes for nickel. National Academy Press, Washington DC

    Google Scholar 

  • Focht I (1979) Gljive Jugoslavije. Nolit, Beograd

    Google Scholar 

  • Franić Z, Senčar J, Bauman A (1992) Caesium radioactivity in mushrooms in Northwest Croatia. Period Biol 94:115–120

    Google Scholar 

  • Friedman M (2015) Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lion’s Mane) mushroom FB and mycelia and their bioactive compounds. J Agric Food Chem 63:7108–7123

    CAS  PubMed  Google Scholar 

  • Fryssouli V, Zervakis GI, Polemis E, Typas MA (2020) A global meta-analysis of ITS rDNA sequences from material belonging to the genus Ganoderma (Basidiomycota, Polyporales) including new data from selected taxa. MycoKeys 75:71–143

    PubMed  PubMed Central  Google Scholar 

  • Gallotti F, Lavoisier A, Turchiuli C, Lavelli V (2020) Impact of Pleurotus ostreatus β-glucans on oxidative stability of active compounds encapsulated in powders during storage and in vitro digestion. Antioxidants 9:1219

    CAS  PubMed Central  Google Scholar 

  • García MA, Alonso J, Melgar M (2009) Lead in edible mushrooms: levels and bioaccumulation factors. J Hazard Mater 167:777–783

    PubMed  Google Scholar 

  • García MA, Alonso J, Melgar M (2013) Bioconcentration of chromium in edible mushrooms: influence of environmental and genetic factors. Food Chem Toxicol 58:249–254

    PubMed  Google Scholar 

  • Gąsecka M, Mleczek M, Siwulski M, Niedzielski P (2016a) Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur Food Res Technol 242:723–732

    Google Scholar 

  • Gąsecka M, Mleczek M, Siwulski M et al (2016b) Phenolic and flavonoid content in Hericium erinaceus, Ganoderma lucidum, and Agrocybe aegerita under selenium addition. Acta Aliment 45:301–309

    Google Scholar 

  • Genççelep H, Uzun Y, Tunçtürk Y, Demirel K (2009) Determination of mineral contents of wild-grown edible mushrooms. Food Chem 113:1033–1036

    Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:563–567

    Google Scholar 

  • Golak-Siwulska I, Kałużewicz A, Spiżewski T et al (2018) Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.). Folia Hortic 30:11–21

    Google Scholar 

  • Gomes Correa RC, Brugnari T, Bracht A et al (2016) Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: a review on the past decade findings. Trends Food Sci Technol 50:103

    Google Scholar 

  • Gong W, Wang Y, Xie C et al (2020) Whole genome sequence of an edible and medicinal mushroom, Hericium erinaceus (Basidiomycota, Fungi). Genomics 112:2393–2399

    CAS  PubMed  Google Scholar 

  • Gregori A (2013) Medicinal mushrooms native to Slovenia. Acta Biol Slov 56:9–22

    Google Scholar 

  • Gründemann C, Reinhardt JK, Lindequist U (2019) European MM: do they have potential for modern medicine? - an update. Phytomedicine 66:153131. https://doi.org/10.1016/j.phymed.2019.153131

    Article  CAS  PubMed  Google Scholar 

  • Habijanic J, Švagelj M, Berovič M et al (2009) Submerged and solid-state cultivation of bioactive extra and intracellular polysaccharides of MM Ganoderma lucidum (W. Curt.: Fr.) P. Karst. and Grifola frondosa (Dicks.: Fr.) S. F. Gray (Aphyllophoromycetideae). Int J Med Mushrooms 11:409–418

    CAS  Google Scholar 

  • Habtemariam S (2020) Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: targets and efficacy (Review). Biomedicines 8:135

    Google Scholar 

  • Hadžić I (1995) Etimologija opštih naziva gljiva. Bilten Mikološkog društva Srbije 1:8–9

    Google Scholar 

  • Hadžić I, Vukojević J (2008) Ilustrovani rečnik sveta gljiva. NNK Internacional, Beograd

    Google Scholar 

  • Hakkim FL, Al-Buloshi M, Achankunju J (2016) Chemical composition and anti-proliferative effect of Oman’s Ganoderma applanatum on breast cancer and cervical cancer cells. J Taibah Univ Sci 11:145–151

    Google Scholar 

  • Haldimann M, Bajo C, Haller T et al (1995) Occurrence of arsenic, lead, cadmium, mercury and selenium in cultivated mushrooms. Mitt Geb Lebensmittelunters Hyg 86:463–484

    CAS  Google Scholar 

  • Hallenberg N, Nilsson RH, Robledo G (2013) Species complexes in Hericium (Russulales, Agaricomycota) and a new species - Hericium rajchenbergii - from southern South America. Mycol Prog 12:413–420

    Google Scholar 

  • He X, Wang X, Fang J et al (2017) Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: a review. Int J Biol Macromol 97:228–237

    CAS  PubMed  Google Scholar 

  • Heleno S, Barros L, Martins A et al (2015) Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT Food Sci Technol 63:475–481

    CAS  Google Scholar 

  • Hennicke F, Cheikh-Ali Z, Liebisch T et al (2016) Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry 127:29–37

    CAS  PubMed  Google Scholar 

  • Hetland G, Tangen JM, Mahmood F et al (2020) Antitumor, anti-inflammatory and antiallergic effects of Agaricus blazei mushroom extract and the related medicinal Basidiomycetes mushrooms, Hericium erinaceus and Grifola frondosa: a review of preclinical and clinical studies. Nutrients 12:1339

    CAS  PubMed Central  Google Scholar 

  • Hobbs C (2005) Medicinal value of Turkey Tail fungus Trametes versicolor (L.: Fr.) Pilát (Aphyllophoromycetideae). Int J Med Mushrooms 6:195–218

    Google Scholar 

  • Hopple JS, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol Phylogenet Evol 13:1–19. http://1000.fungalgenomes.org/home

    CAS  PubMed  Google Scholar 

  • Huang Q, Jia Y, Wan Y et al (2015) Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J Food Sci 80:H1612–H1618

    CAS  PubMed  Google Scholar 

  • Huang Y, Li X, Peng X et al (2020a) NMR-based structural classification, identification, and quantification of triterpenoids from edible mushroom Ganoderma resinaceum. J Agric Food Chem 68:2816–2825

    CAS  PubMed  Google Scholar 

  • Huang Y, Wei G, Peng X et al (2020b) Triterpenoids from functional mushroom Ganoderma resinaceum and the novel role of Resinacein S in enhancing the activity of brown/beige adipocytes. Food Res Int 136:109303

    CAS  PubMed  Google Scholar 

  • Hyde KD, Bahkali AH, Moslem MA (2010) Fungi - an usual source for cosmetics. Fungal Divers 43:1–9

    Google Scholar 

  • Isildak O, Türkekul İ, Elmastaș M, Tuzen M (2004) Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem 86:547–552

    CAS  Google Scholar 

  • Jakopović B, Oršolić N, Kraljević Pavelić S (2020) Antitumor, immunomodulatory and antiangiogenic efficacy of medicinal mushroom extract mixtures in advanced colorectal cancer animal model. Molecules 25:5005

    PubMed Central  Google Scholar 

  • Janjušević L, Karaman M, Šibul F et al (2017) The lignicolous fungus Trametes versicolor (L.) Lloyd (1920): a promising natural source of antiradical and AChE inhibitory agents. J Enzyme Inhib Med Chem 32:355–362

    PubMed  PubMed Central  Google Scholar 

  • Janjušević L, Pejin B, Kaišarević S et al (2018) Trametes versicolor ethanol extract, a promising candidate for health–promoting food supplement. Nat Prod Res 32:963–967

    Google Scholar 

  • Jayakumar T, Thomas PA, Sheu JR, Geraldine P (2011) In-vitro and in-vivo antioxidant effects of the oyster mushrooms P. ostreatus. Food Res Int 44:851–861

    Google Scholar 

  • Jeong YT, Yang BK, Jeong SC et al (2008) Ganoderma applanatum: a promising mushroom for antitumor and immunomodulating activity. Phytother Res 22:614–619

    Google Scholar 

  • Jhan MH, Yeh CH, Tsai CC et al (2016) Enhancing the antioxidant ability of Trametes versicolor polysaccharopeptides by an enzymatic hydrolysis process. Molecules 21:1215

    PubMed Central  Google Scholar 

  • Jiang XG, Lian MX, Han Y, Lv SM (2013) Antitumor and immunomodulatory activity of a polysaccharide from fungus Coprinus comatus (Mull.:Fr.) Gray. Int J Biol Macromol 58:349. https://doi.org/10.1016/j.ijbiomac.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  • Jumbam B, Haelewaters D, Koch RA et al (2019) A new and unusual species of Hericium (Basidiomycota: Russulales, Hericiaceae) from the Dja Biosphere Reserve, Cameroon. Mycol Prog 18:1253–1262

    Google Scholar 

  • Jung SH, Lee YS, Shim SH et al (2005) Inhibitory effects of Ganoderma applanatum on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Phytother Res 19:477–480

    PubMed  Google Scholar 

  • Jurc D, Piltaver A, Ogris N (2005) Glive Slovenije – fungi of Slovenia, vol VI. Studia forestalia Slovenica, Ljubljana, p 497

    Google Scholar 

  • Justo A, Hibbett DS (2011) Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset. Taxon 60:1567–1583

    Google Scholar 

  • Kalač P (2013) A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric 93:209–218

    PubMed  Google Scholar 

  • Kalač P (2016) Edible mushrooms: chemical composition and nutritional value. Academic Press, Amsterdam, pp 19–40

    Google Scholar 

  • Kalač P (2019) Mineral composition and radioactivity of edible mushrooms, 1st edn. Academic Press, Elsevier

    Google Scholar 

  • Kamiyama M, Shibamoto T, Horiuchi M et al (2013) Antioxidant/anti-inflammatory activities and chemical composition of extracts from the mushroom Trametes versicolor. Int J Food Sci Nutr 2:85–91

    Google Scholar 

  • Karadelev M, Rusevska K, Kajevska I (2008) Distribution and ecology of genus Ganoderma (Ganodermataceae) in the Republic of Macedonia. In: Paper presented at the International conference on biological and environmental sciences, University of Tirana, Albania, 26-29 September 2008

    Google Scholar 

  • Karadžić D, Radulović Z, Milenković I (2014) Ganoderma species in the forests of Serbia and Montenegro. Šumarstvo 1–2:1-7

    Google Scholar 

  • Karaman M (2002) The content of macroelements, heavy metals and radionuclides in sporocarps of dominantly present Basidiomycotina of the Fruška Gora Mountain and their antioxidative activity. Master’s thesis, University of Novi Sad

    Google Scholar 

  • Karaman M (2009) Autochthones fungal species of Basidiomycotina - potential resources of naturally active substances. Dissertation, Faculty of Sciences, University of Novi Sad

    Google Scholar 

  • Karaman M (2012) Healing properties of autochthonous macrofungi. Zadužbina Andrejević, Beograd

    Google Scholar 

  • Karaman M, Matavulj M (2005) Macroelements and heavy metals in some lignicolous and tericolous fungi. In: Proceedings of Natural Sciences, vol 108. Novi Sad, Matica Srpska, pp 255–267

    Google Scholar 

  • Karaman M, Mimica-Dukić N, Matavulj M (2005) Lignicolous fungi as potential natural sources of antioxidants. Arch Biol Sci 57:93–100

    Google Scholar 

  • Karaman M, Kaišarević S, Somborski J et al (2009a) Biological activities of the lignicolous fungus Meripilus giganteus (Pers.:Pers.) Karst. Arch Biol Sci 61:353–361

    Google Scholar 

  • Karaman M, Mimica-Dukić N, Knezevic P et al (2009b) Antibacterial properties of selected lignicolous mushrooms and fungi from northern Serbia. Int J Med Mushrooms 11:269–279

    CAS  Google Scholar 

  • Karaman M, Jovin E, Malbaša R et al (2010) Medicinal and edible Lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother Res 24:1473–1481

    CAS  PubMed  Google Scholar 

  • Karaman M, Matavulj M, Janjić LJ (2012a) Antibacterial agents from lignicolous macrofungi. In: Varaprasad B (ed) Antimicrobial agents, Chapter 18. InTech, Rijeka

    Google Scholar 

  • Karaman M, Novakovic M, Matavuly M (2012b) Fundamental fungal strategies in restoration of natural environment. In: Vazquez MSA, Silva AP (eds) Fungi: types, environmental impact and role in disease. Nova Science Publishers, Hauppauge, NY, pp 167–214

    Google Scholar 

  • Karaman M, Vesic M, Stahl M et al (2012c) Bioactive properties of wild-growing mushroom species Ganoderma applanatum (Pers.) Pat. from Fruška Gora Forest (Serbia). RPMP Ethnomed Ther Valid 32:361–377

    Google Scholar 

  • Karaman M, Stahl M, Vulić JJ et al (2014) Wild-growing lignicolous mushroom species as sources of novel agents with antioxidative and antibacterial potentials. Int J Food Sci Nutr 65:311–319

    CAS  PubMed  Google Scholar 

  • Karaman M, Tesanovic K, Novakovic A et al (2018a) Coprinus comatus filtrate extract, a novel neuroprotective agent of natural origin. Nat Prod Res 34:2346–2350

    Google Scholar 

  • Karaman M, Janjušević LJ, Jakovljević D et al (2018b) Anti-hydroxyl radical activity, redox potential and anti-AChE activity of Amanita strobiliformis polysaccharide extract. Nat Prod Res 2:1–5

    Google Scholar 

  • Karaman M, Tesanovic K, Gorjanovic S et al (2019a) Polarography as a technique of choice for the evaluation of total antioxidant activity: the case study of selected Coprinus comatus extracts and quinic acid, their antidiabetic ingredient. Nat Prod Res 35:1711–1716

    PubMed  Google Scholar 

  • Karaman M, Atlagić K, Novaković A et al (2019b) FAs predominantly affect anti-hydroxyl radical activity and FRAP value: the case study of two edible mushrooms. Antioxidants 8:480

    CAS  PubMed Central  Google Scholar 

  • Keleş A, Genççelep H (2020) Determination of elemental composition of some wild growing edible mushrooms. Ekim 11:129–137

    Google Scholar 

  • Kim S (2020) Antioxidant compounds for the inhibition of enzymatic browning by polyphenol oxidases in the FB extract of the edible mushroom Hericium erinaceus. Foods 9:951

    CAS  PubMed Central  Google Scholar 

  • Kirchner G, Daillant O (1998) Accumulation of 210Pb, 226Ra and radioactive cesium by fungi. Sci Total Environ 222:63–70

    CAS  PubMed  Google Scholar 

  • Klaus A, Kozarski M, Niksic M et al (2011) Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune. LWT Food Sci Technol 44:2005–2011

    CAS  Google Scholar 

  • Klaus A, Kozarski M, Vunduk J et al (2016) Antibacterial and antifungal potential of wild Basidiomycete mushroom Ganoderma applanatum. Lekovite sirovine 36:37–46

    Google Scholar 

  • Koch I, Wang L, Reimer K, Cullen W (2000) Arsenic species in terrestrial fungi and lichens from Yellowknife, NWT, Canada. Appl Organomet Chem 14:245–252

    CAS  Google Scholar 

  • Kolundzic MD, Stanojković T, Radović J et al (2017) Cytotoxic and antimicrobial activities of Cantharellus cibarius Fr. (Cantharellaceae). J Med Food 20:790–796

    CAS  PubMed  Google Scholar 

  • Kostić M, Smiljković M, Petrović J et al (2017) Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom: Armillaria mellea (Vahl: Fr.) Kummer. Food Funct 8:3239–3249

    PubMed  Google Scholar 

  • Kozarski M, Klaus A, Nikšić M et al (2012) Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J Food Compos Anal 26:144–153

    CAS  Google Scholar 

  • Kozarski M, Klaus A, Jakovljević D et al (2019) Ganoderma lucidum as a cosmeceutical: antiradical potential and inhibitory effect on hyperpigmentation and skin extracellular matrix degradation enzymes. Arch Biol Sci 71:253–264

    Google Scholar 

  • Kozarski MS, Klaus AS, Vunduk JĐ et al (2020) Health impact of the commercially cultivated mushroom Agaricus bisporus and the wild-growing mushroom Ganoderma resinaceum – a comparative overview. J Serb Chem Soc 85:721–735

    CAS  Google Scholar 

  • Kuo PC, Thang TD, Huang GJ et al (2016) Chemical constituents of Ganoderma pfeifferi and their inhibitory effect on nitric oxide production. Chem Nat Compounds 52:948–950

    CAS  Google Scholar 

  • Landi N, Ragucci S, Russo R et al (2020) The ribotoxin-like protein Ostreatin from Pleurotus ostreatus FB: confirmation of a novel ribonuclease family expressed in basidiomycetes. Int J Biol Macromol 161:1329–1336

    CAS  PubMed  Google Scholar 

  • Lenzi M, Cocchi V, Novaković A et al (2018) Meripilus giganteus ethanolic extract exhibits pro-apoptotic and anti-proliferative effects in leukemic cell lines. BMC Complement Altern Med 18:300

    Google Scholar 

  • Li B, Lu F, Suo X et al (2010) Antioxidant properties of cap and stipe from Coprinus comatus. Molecules 15:1473–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhou W, Lee DS et al (2014) Hericirine, a novel anti-inflammatory alkaloid from Hericium erinaceum. Tetrahedron Lett 55:4086–4090

    CAS  Google Scholar 

  • Li W, Zhou W, Kim EJ et al (2015) Isolation and identification of aromatic compounds in Lion’s Mane mushroom and their anticancer activities. Food Chem 170:336–342

    CAS  PubMed  Google Scholar 

  • Li L, Li H, Peng XR et al (2016) (±)-Ganoapplanin, a pair of polycyclic meroterpenoid enantiomers from Ganoderma applanatum. Org Lett 18:6078–6081

    Google Scholar 

  • Li LD, Mao PW, Shao KD et al (2019a) Ganoderma proteins and their potential applications in cosmetics. Appl Microbiol Biotechnol 103:9239–9250

    Google Scholar 

  • Li M, Wang P, Wang J et al (2019b) Arsenic concentrations, speciation, and localization in 141 cultivated market mushrooms: implications for arsenic exposure to humans. Environ Sci Technol 53:503–511

    CAS  PubMed  Google Scholar 

  • Li J, Han LH, Liu X et al (2020) The saprotrophic Pleurotus ostreatus species complex: late Eocene origin in East Asia, multiple dispersal, and complex speciation. IMA Fungus 11:1–21

    Google Scholar 

  • Liang B, Guo Z, Xie F et al (2013) Antihyperglycemic and anti-hyperlipidemic activities of aq extract of Hericium erinaceus in experimental diabetic rats. BMC Complement Altern Med 13:253

    PubMed  PubMed Central  Google Scholar 

  • Liang C, Tian D, Liu Y et al (2019) Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: GAs A, C2, D, F, DM, X and Y. Eur J Med Chem 174:130–141

    CAS  PubMed  Google Scholar 

  • Liao J, Huang H (2019) Extraction of a novel fungal chitin from Hericium erinaceus residue using multistep mild procedures. Int J Biol Macromol 156:1279–1286

    PubMed  Google Scholar 

  • Liao B, Zhou C, Liu T et al (2020) A novel Hericium erinaceus polysaccharide: structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells. Int J Mol Macromol 154:1460–1470

    CAS  Google Scholar 

  • Lindequist U, Jülich WD, Witt S (2015) Ganoderma pfeifferi—a European relative of Ganoderma lucidum. Phytochemistry 114:102–108

    Google Scholar 

  • Linkov I, Yoshida S, Steiner M (2000) Fungi contaminated by radionuclides: critical review of approaches to modeling. In: IRPA-10 Proceedings

    Google Scholar 

  • Liu X, Frydenvang K, Liu H et al (2015) Iminolactones from Schizophyllum commune. J Nat Prod 22:1165–1168

    Google Scholar 

  • Liu X, Deng W, Yang Y (2021) Characterization of a novel laccase LAC-Yang1 from white-rot fungus Pleurotus ostreatus strain Yang1 with a strong ability to degrade and detoxify chlorophenols. Molecules 26:473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente-Mirandes T, Llorens-Muñoz M, Funes-Collado V et al (2016) Assessment of arsenic bioaccessibility in raw and cooked edible mushrooms by a PBET method. Food Chem 194:849–856

    CAS  PubMed  Google Scholar 

  • López-Vázquez E, Prieto-García F (2016) Minerals and toxic elements in wild mushroom species from regions of Hidalgo State in Mexico. Asian J Chem 28:2725–2730

    Google Scholar 

  • Luo Q, Di L, Dai WF et al (2015) Applanatumin A, a new dimeric meroterpenoid from Ganoderma applanatum that displays potent antifibrotic activity. Org Lett 17:1110–1113

    CAS  PubMed  Google Scholar 

  • Luo Q, Yang XH, Yang ZL et al (2016) Miscellaneous meroterpenoids from Ganoderma applanatum. Tetrahedron 72:4564–4574

    CAS  Google Scholar 

  • Malinowska E, Szefer P, Bojanowski R (2006) Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chem 97:19–24

    CAS  Google Scholar 

  • Manasseh AT, Godwin JTA, Emanghe EU, Borisde OO (2012) Phytochemical properties of Ganoderma applanatum as potential agents in the application of nanotechnology in modern day medical practice. Asian Pac J Trop Biomed 2:S580–S583

    Google Scholar 

  • Marek S, Piotr R, Przemysław N et al (2017) Comparison of multielemental composition of Polish and Chinese mushrooms (Ganoderma spp.). Eur Food Res Technol 243:1555–1566

    CAS  Google Scholar 

  • Mattila P, Könkö K, Eurola M et al (2001) Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 49:2343–2348

    CAS  PubMed  Google Scholar 

  • Melgar M, Alonso J, García MA (2009) Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci Total Environ 407:5328–5334

    CAS  PubMed  Google Scholar 

  • Melgar M, Alonso J, García A (2016) Cadmium in edible mushrooms from NW Spain: bioconcentration factors and consumer health implications. Food Chem Toxicol 88:13–20

    CAS  PubMed  Google Scholar 

  • Mietelski J, Dubchak S, Błażej S et al (2010) 137Cs and 40K in FB of different fungal species collected in a single forest in southern Poland. J Environ Radioact 101:706–711

    Google Scholar 

  • Mirończuk-Chodakowska I, Socha K, Zujko M et al (2019) Copper, manganese, selenium and zinc in wild-growing edible mushrooms from the Eastern territory of “Green Lungs of Poland”: nutritional and toxicological implications. Int J Environ Res Public Health 16:3614

    PubMed Central  Google Scholar 

  • Mišković J, Karaman M, Rašeta M et al (2021) Comparison of two Schizophyllum commune strains in production of acetylcholinesterase inhibitors and antioxidants from submerged cultivation. J Fungi 7:115

    Google Scholar 

  • Mitrovic M, Todorović D, Ajtić J et al (2020) A review: natural and artificial radionuclides and radiation hazard parameters in the soil of mountain regions in Serbia. J Agric Sci 65:1–18

    Google Scholar 

  • Mleczek M, Niedzielski P, Siwulski M et al (2015) Importance of low substrate arsenic content in mushroom cultivation and safety of final food product. Eur Food Res Technol 242:355–362

    Google Scholar 

  • Mleczek M, Niedzielski P, Kalač P, Budka A, Siwulski M, Gąsecka M, Rzymski P, Magdziak Z, Sobieralski K (2016) Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ Sci Pollut Res 23:16280–16295

    CAS  Google Scholar 

  • Mleczek M, Gąsecka M, Budka A et al (2020) Changes in mineral composition of six strains of Pleurotus after substrate modifications with different share of nitrogen forms. Eur Food Res Technol 247:245–257

    Google Scholar 

  • Moncalvo JM, Lutzoni FM, Rehner SA et al (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305

    CAS  PubMed  Google Scholar 

  • Mothana R, Jansen R, Jülich WD, Lindequist U (2000) Ganomycin A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J Nat Prod 63:416–418

    CAS  PubMed  Google Scholar 

  • Mothana R, Awadh Ali NA, Jansen R et al (2003) Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia 74:177–180

    CAS  PubMed  Google Scholar 

  • Murati E, Hristovski S, Karadelev M, Melovski L (2019) The impact of thermal power plant Oslomej (Kichevo valley, Macedonia) on heavy metal contents (Ni, Cu, Zn, Fe, Mn, Pb, Cd) in FB of 15 species of wild fungi. Air Qual Atmos Health 12:353–358

    CAS  Google Scholar 

  • Mycobank (n.d.). http://www.mycobank.org

  • Nagy ĹG, Házi J, Vágvölgyi C, Papp T (2012) Phylogeny and species delimitation in the genus Coprinellus with special emphasis on the haired species. Mycologia 104:254–275

    PubMed  Google Scholar 

  • Nagy LG, Desjardin DE, Vágvölgyi C et al (2013) Phylogenetic analyses of Coprinopsis sections Lanatuli and Atramentarii identify multiple species within morphologically defined taxa. Mycologia 105:112–124

    PubMed  Google Scholar 

  • Naimushina LV, Zykova ID, Gubanenko GA et al (2020) Comparative analysis of antiradical and antibacterial activity of Boletus edulis basidiomycetes growing in different climatic zones. Environ Earth Sci 421:072004

    Google Scholar 

  • National Library of Serbia (1989) The Hilandar Medical Codex N517 translation. National Library of Serbia Children’s Newspapers and the Administration for International Scientific, Educational, Cultural and Technical Cooperation of RS of Serbia, Belgrade. ISBN 86-7035-030-3

    Google Scholar 

  • Niedermeyer THJ, Lindequist U, Mentel R et al (2005) Antiviral terpenoid constituents of Ganoderma pfeifferi. J Nat Prod 68:1728–1731

    CAS  PubMed  Google Scholar 

  • Niedermeyer THJ, Jira T, Lalk M, Lindequist U (2013) Isolation of farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. Nat Prod Bioprospect 3:137–140

    CAS  PubMed Central  Google Scholar 

  • Niedzielski P, Mleczek M, Siwulski M et al (2014) Efficacy of supplementation of selected MM with inorganic selenium salts. J Environ Sci Health B 49:929–937

    CAS  PubMed  Google Scholar 

  • Niedzielski P, Mleczek M, Budka A, Rzymski P, Siwulski M, Jasińska A, Gąsecka M, Budzyńska S (2017) A screening study of elemental composition in 12 marketable mushroom species accessible in Poland. Eur Food Res Technol 243(10):1759–1771. https://doi.org/10.1007/s00217-017-2881-7

    Article  CAS  Google Scholar 

  • Nikolovska Nedelkoska D, Atanasova-Pancevska N, Amedi H et al (2013) Screening of antibacterial and antifungal activities of selected Macedonian wild mushrooms. J Nat Sci 124:333–340

    Google Scholar 

  • Nomura S, Tsubokura M, Gilmour S et al (2016) An evaluation of early countermeasures to reduce the risk of internal radiation exposure after the Fukushima nuclear incident in Japan. Health Policy Plan 31:425–433

    PubMed  Google Scholar 

  • Novakovic A, Karaman M, Kaisarevic S et al (2017) Antioxidant and antiproliferative potential of FB of the wild-growing King Bolete Mushroom, Boletus edulis (Agaricomycetes), from Western Serbia. Int J Med Mushrooms 19:27–34

    PubMed  Google Scholar 

  • Nowakowski P, Naliwajko S, Markiewicz-Żukowska R et al (2020) The two faces of Coprinus comatus—functional properties and potential hazards. Phytother Res 34:2932–2944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obodai M, Mensah DLN, Fernandes  et al (2017) Chemical characterization and antioxidant potential of wild Ganoderma species from Ghana. Molecules 22:196

    PubMed Central  Google Scholar 

  • Official Gazette of the Republic of Serbia, no. 28 / 2011– Ordinance on quantities of pesticides, metals and metalloids and other toxic substances, chemotherapeutics, anabolics and other substances that may be found in food

    Google Scholar 

  • Ogidi CO, Oyetayo VO, Akinyele BJ (2020) Wild medicinal mushrooms: potential applications in phytomedicine and functional foods. IntechOpen, London. https://doi.org/10.5772/intechopen.90291

    Book  Google Scholar 

  • Ogris N (2013) Podatkovna zbirka gliv Slovenije Boletus informaticus

    Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG et al (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963

    CAS  PubMed  Google Scholar 

  • Orhan I, Osman U (2011) Determination of total phenol content, antioxidant activity and AChE inhibition in selected mushrooms from Turkey. J Food Compos Anal 24:386–390

    CAS  Google Scholar 

  • Orita M, Nakashima K, Taira Y et al (2017) Radiocesium concentrations in wild mushrooms after the accident at the Fukushima Daiichi Nuclear Power Station: follow-up study in Kawauchi village. Sci Rep 7:1–7

    CAS  Google Scholar 

  • Orita M, Kimura Y, Taira Y et al (2018) Activities concentration of radiocesium in wild mushroom collected in Ukraine 30 years after the Chernobyl power plant accident. PeerJ 6:e4222

    PubMed  PubMed Central  Google Scholar 

  • Paterson RRM (2006) Ganoderma - a therapeutic fungal biofactory. Phytochemistry 67:1985–2001

    CAS  PubMed  Google Scholar 

  • Peintner U, Schwarz S, Mešić A et al (2013) Mycophilic or Mycophobic? Legislation and guidelines on wild mushroom commerce reveal different consumption behaviour in European countries. PLoS One 8:e63926

    PubMed  PubMed Central  Google Scholar 

  • Pejin B, Tešanović K, Jakovljević D et al (2017) The polysaccharide extracts from the fungi Coprinus comatus and Coprinellus truncorum do exhibit AChE inhibitory activity. Nat Prod Res 33:750–754

    PubMed  Google Scholar 

  • Peng XR, Liu JQ, Han ZH (2013) Protective effects of triterpenoids from Ganoderma resinaceum on H2O2-induced toxicity in HepG2 cells. Food Chem 141:920–926

    CAS  PubMed  Google Scholar 

  • Peric B, Peric O (1997) Edible mushrooms from the family of Boletaceae in Montenegro. Agric For 43:57–71

    Google Scholar 

  • Petkovšek SA, Pokorny B (2013) Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Sci Total Environ 443:944–954

    PubMed  Google Scholar 

  • Petrović J, Glamočlija J, Ilić-Tomić T et al (2020) Lectin from Laetiporus sulphureus effectively inhibits angiogenesis and tumor development in the zebrafish xenograft models of colorectal carcinoma and melanoma. Int J Biol Macromol 148:129–139

    PubMed  Google Scholar 

  • Piljac-Žegarac J, Šamec D, Piljac A et al (2011) Antioxidant properties of extracts of wild medicinal mushroom species from Croatia. Int J Med Mushrooms 13:257–263

    PubMed  Google Scholar 

  • Pop RM, Puia IC, Puia A et al (2018) Characterization of Trametes versicolor: medicinal mushroom with important health benefits. Not Bot Horti Agrobo 46:343–349

    CAS  Google Scholar 

  • Rakić M (2019) Diversity of macrofungi and their role in the monitoring of forest ecosystems in Serbia. Dissertation, University of Novi Sad

    Google Scholar 

  • Rakić M, Karaman M, Forkapić S, Hansman J, Kebert M, Bikit K, Mrdja D (2014) Radionuclides in some edible and medicinal macrofungal species from a Tara Mountain. Serbia Env Sci Pollut Res 21(19):11283–11292

    Google Scholar 

  • Rašeta M, Karaman M, Jakšić M et al (2016) Mineral composition, antioxidant and cytotoxic biopotentials of wild-growing Ganoderma species (Serbia): G. lucidum (Curtis) P. Karst vs. G. applanatum (Pers.) Pat. Int J Food Sci Technol 51:2583–2590

    Google Scholar 

  • Rašeta M, Popović M, Beara I et al (2020a) Anti-inflammatory, antioxidant and enzyme inhibition activities in correlation with mycochemical profile of selected indigenous Ganoderma spp. from Balkan region (Serbia). Chem Biodivers 17:e2000828

    Google Scholar 

  • Rašeta M, Popović M, Čapo I et al (2020b) Antidiabetic effect of two different Ganoderma species tested in alloxan diabetic rats. RSC Adv 10:10382–10393

    PubMed  PubMed Central  Google Scholar 

  • Rašeta M, Popović M, Knežević P et al (2020c) Bioactive phenolic compounds of two medicinal mushroom species Trametes versicolor and Stereum subtomentosum as antioxidant and antiproliferative agents. Chem Biodivers 17:e2000683

    PubMed  Google Scholar 

  • Razak DL, Jamaluddin A, Rashid NY et al (2018) Comparative evaluation of Schizophyllum commune extracts as potential cosmeceutical bio-ingredient. Int J Agric Sci 5:2348–2397

    Google Scholar 

  • Rexhepi B, Reka A (2020) Ethno-mycological knowledge of some wild medicinal and food mushrooms from Osogovo Mountains (North Macedonia). J Nat Sci Math UT 5:10–19

    Google Scholar 

  • Riley R, Salamov AA, Brown DW et al (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A 11:9923–9928

    Google Scholar 

  • Rodrigues D, Freitas AC, Rocha-Santos T et al (2015) Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J Food Sci Technol 52:6927–6939

    CAS  Google Scholar 

  • Rzymski P, Mleczek M, Siwulski M et al (2016) The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. J Food Compos Anal 51:55–60

    CAS  Google Scholar 

  • Salihović A, Šapčanin E, Pehlić A et al (2019) Amino acids composition and antioxidant activity of selected mushrooms from Bosnia and Herzegovina. Kem Ind 68:97–103

    Google Scholar 

  • Salihović M, Šapčanin A, Špirtović-Halilović S et al (2020) Antimicrobial activity of selected wild mushrooms from different areas of Bosnia and Herzegovina. In: Badnjevic A, Škrbić R, Gurbeta Pokvić L (eds) CMBEBIH 2019. IFMBE Proceedings, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-17971-7_80

    Chapter  Google Scholar 

  • Saniewski M, Zalewska T, Krasińska G et al (2016) 90Sr in King Bolete Boletus edulis and certain other mushrooms consumed in Europe and China. Sci Total Environ 543:287–294

    Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S et al (2012) Unter Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekitani Y, Hayashida N, Karevskaya IV et al (2010) Evaluation of 137Cs body burden in inhabitants of Bryansk Oblast, Russian Federation, where a high incidence of thyroid cancer was observed after the accident at the Chernobyl nuclear power plant. Radiat Prot Dosim 141:36–42

    CAS  Google Scholar 

  • Shi Q, Huang Y, Su H et al (2019) C28 steroids from the FB of Ganoderma resinaceum with potential anti-inflammatory activity. Phytochemistry 168:112109

    Google Scholar 

  • Shi QQ, Huang YJ, Su HG et al (2020) Structurally diverse lanostane triterpenoids from medicinal and edible mushroom Ganoderma resinaceum Boud. Bioorg Chem 100:103871

    CAS  PubMed  Google Scholar 

  • Shnyreva AA, Shnyreva AV (2015) Phylogenetic analysis of Pleurotus species. Russ J Genet 51:148–157

    CAS  Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  • Singh U, Das K (2019) Hericium rajendrae sp. nov. (Hericiaceae, Russulales): an edible mushroom from Indian Himalaya. Nova Hedwigia 108:505–515

    Google Scholar 

  • Siqueira JPZ, Sutton D, Decock C et al (2016) Schizophyllum radiatum, an emerging fungus from the human respiratory tract. J Clin Microbiol 54:2491–2497

    Google Scholar 

  • Siwulski M, Mleczek M, Rzymski P et al (2017) Screening the multi-element content of Pleurotus mushroom species using an inductively coupled plasma optical emission spectrometer (ICP-OES). Food Anal Methods 10:487–496

    Google Scholar 

  • Siwulski M, Rzymski P, Budka A et al (2019) The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their FB. Eur Food Res Technol 245:419–431

    CAS  Google Scholar 

  • Škrbić B, Milovac S, Matavulj M (2012) Multielement profiles of soil, road dust, tree bark and wood-rotting fungi collected at various distances from high-frequency roads in urban areas. Ecol Indic 13:168–177

    Google Scholar 

  • Steinhauser G, Brandl A, Johnson T (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817

    PubMed  Google Scholar 

  • Stilinović N, Škrbić B, Živančev J et al (2014) The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms. Food Funct 5:3170. https://doi.org/10.1039/c4fo00703d

    Article  PubMed  Google Scholar 

  • Stilinović N, Čapo I, Vukmirović S et al (2020) Chemical composition, nutritional profile and in vivo antioxidant properties of the cultivated mushroom Coprinus comatus. R Soc Open Sci 7:200900

    PubMed  PubMed Central  Google Scholar 

  • Stojanova M, Pantić M, Karadelev M, Čuleva B, Niksic M (2020) Antioxidant potential of extracts of three mushroom species collected from the Republic of North Macedonia. J Food Process Preserv 45(2):e15155. https://doi.org/10.1111/jfpp.15155

    Article  CAS  Google Scholar 

  • Stojković D, Reis FS, Barros L et al (2013) Nutrients and non-nutrients composition and bioactivity of wild and cultivated Coprinus comatus (O.F.Müll.) Pers. Food Chem Toxycol 59:289–296

    Google Scholar 

  • Stojković DS, Barros L, Calhelha RC et al (2014) A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins. Int J Food Sci Nutr 65:42–47

    PubMed  Google Scholar 

  • Su CH, Lai MN, Lin CC, Ng LT (2016) Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected MM. Appl Microbiol Biotechnol 100:4385–4393

    CAS  PubMed  Google Scholar 

  • Sun X, Yanping S, Zhang Q et al (2014) Screening and comparison of antioxidant activities of polysaccharides from Coriolus versicolor. Int J Biol Macromol 69:12–19

    CAS  PubMed  Google Scholar 

  • Sun X, Zhao C, Pan W et al (2015) Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide. Carbohydr Polym 123:283–287

    CAS  PubMed  Google Scholar 

  • Svoboda L, Chrastný V (2007) Levels of eight trace elements in edible mushrooms from a rural area. Food Addit Contam A 25:51–58

    Google Scholar 

  • Taofiq O, Gonzalez-Paramas AM, Martins A et al (2016) Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics - a review. Ind Crop Prod 90:38–48

    CAS  Google Scholar 

  • Taofiq O, Heleno SA, Calhelha RC et al (2017) The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem Toxicol 108:139–147

    CAS  PubMed  Google Scholar 

  • Terada H, Yamaguchi I, Shimura T et al (2018) Regulation values and current situation of radioactive materials in food. J Natl Inst Public Health 67:21–33

    Google Scholar 

  • Tešanović K, Pejin B, Šibul F et al (2017) A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: FB and submerged cultures of Coprinus comatus and Coprinellus truncorum. J Food Sci Technol 54:430–438

    PubMed  PubMed Central  Google Scholar 

  • Thongbai B, Rapior S, Hyde KD et al (2015) Hericium erinaceus, an amazing medicinal mushroom. Mycol Prog 14:91

    Google Scholar 

  • Tkalčec Z, Mešić A, Matočec N et al (2008) Red book of Croatian fungi. Ministry of Culture, State Institute for Nature Protection, Republic of Croatia

    Google Scholar 

  • Tomšovský M, Kolařík M, Pažoutová S, Homolka L (2006) Molecular phylogeny of European Trametes (Basidiomycetes, Polyporales) species based on LSU and ITS (nrDNA) sequences. Nova Hedwigia 82:269–280

    Google Scholar 

  • Traxler L, Wollenberg A, Steinhauser G et al (2021) Survival of the basidiomycete Schizophyllum commune in soil under hostile environmental conditions in the Chernobyl Exclusion Zone. J Hazard Mater 403:124002

    CAS  PubMed  Google Scholar 

  • Tripathi AM, Tiwary BN (2013) Biochemical constituents of a wild strain of Schizophyllum commune isolated from Achanakmar-Amarkantak Biosphere Reserve (ABR), India. World J Microbiol Biotechnol 29:1431–1442

    CAS  PubMed  Google Scholar 

  • Tsiantas K, Tsiaka T, Koutrotsios G et al (2021) On the identification and quantification of ergothioneine and lovastatin in various mushroom species: assets and challenges of different analytical approaches. Molecules 26:1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucaković I, Barišić D, Grahek Ž et al (2018) 137Cs in mushrooms from Croatia sampled 15-30 years after Chernobyl. J Environ Radioact 181:147–151

    Google Scholar 

  • Tuo F, Zhang J, Li W et al (2017) Radionuclides in mushrooms and soil-to-mushroom transfer factors in certain areas of China. J Environ Radioact 180:59–64

    CAS  PubMed  Google Scholar 

  • Turfan N, Pekşen A, Kibar B, Ünal S (2018) Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Sci Pol-Hortorum Cultus 17:57–72

    Google Scholar 

  • Türkekul İ, Elmastaș M, Tuzen M (2004) Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem 84:389–392

    Google Scholar 

  • Veljović S, Veljović M, Nikićević N et al (2017) Chemical composition, antiproliferative and antioxidant activity of differently processed Ganoderma lucidum ethanol extracts. J Food Sci Technol 54:1312–1320

    PubMed  PubMed Central  Google Scholar 

  • Venturella G, Ferraro V, Cirlincione F, Gargano M (2021) Medicinal mushrooms: bioactive compounds, use, and clinical trials. Int J Mol Sci 22:634

    CAS  PubMed Central  Google Scholar 

  • Vetter J (2019) Biological values of cultivated mushrooms – a review. Acta Aliment 48:229–240

    CAS  Google Scholar 

  • Villares A, Mateo-Vivaracho L, Guillamón E (2012) Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture 2:452–471

    CAS  Google Scholar 

  • Vukojević J, Stajić M, Duletić-Laušević S, Simonić J (2006) Effect of medium pH and cultivation period on mycelial biomass, polysaccharide, and ligninolytic enzyme production by Ganoderma lucidum from Montenegro. Arch Biol Sci 58:179–182

    Google Scholar 

  • Wang CF, Liu JQ, Yan YX et al (2010) Three new triterpenoids containing four-membered ring from the FB of Ganoderma sinense. Org Lett 12:1656–1659

    CAS  PubMed  Google Scholar 

  • Wang K, Bao L, Qi Q et al (2015) Erinacerins C–L, isoindolin-1-ones with α-glucosidase inhibitory activity from cultures of the medicinal mushroom Hericium erinaceus. J Nat Prod 78:146–154

    CAS  PubMed  Google Scholar 

  • Wang XL, Xu KP, Long HP et al (2016) New isoindolinone from the FB of Hericium erinaceum. Fitoterapia 111:58–95

    CAS  PubMed  Google Scholar 

  • Wang L, Li JQ, Zhang J et al (2020) Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: a review. RSC Adv 10:42084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasser SP (2005) Reishi or Ling Zhi (Ganoderma lucidum). In: Coates PM, Betz JM, Blackman MR et al (eds) Encyclopedia of dietary supplements. Marcel Dekker, New York, NY

    Google Scholar 

  • Welti S, Moreau PA, Favel A et al (2012) Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes. Fungal Divers 55:47–64

    Google Scholar 

  • Wu Y, Choi MH, Li J et al (2016) Mushroom cosmetics: the present and future. Cosmetics 3:22

    Google Scholar 

  • Wu D, Yang S, Tang C et al (2018) Structural properties and macrophage activation of cell wall polysaccharides from the FB of Hericium erinaceus. Polymers 10:850

    PubMed Central  Google Scholar 

  • Xie J, Zhao J, Hu DJ et al (2012) Comparison of polysaccharides from two species of Ganoderma. Molecules 17:740–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yalcin OU, Sarikurkcu C, Cengiz M et al (2020) Ganoderma carnosum and Ganoderma pfeifferi: metal concentration, phenolic content, and biological activity. Mycologia 112:1. https://doi.org/10.1080/00275514.2019.1689748

  • Yamac M, Yildiz D, Sarikurkcu C et al (2007) Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem 103:263–267

    CAS  Google Scholar 

  • Yang QF, Hu QY, Ma ZH et al (2018) A new meroterpenoid from Ganoderma resinaceum. Chin Trad Herb Drugs 50

    Google Scholar 

  • Yang Q, He K, Qiu S et al (2019a) A new lanostane triterpenoid from Ganoderma resinaceum. J Asian Nat Prod Res 22:1095–1099

    PubMed  Google Scholar 

  • Yang Y, Zhang H, Zuo J et al (2019b) Advances in research on the active constituents and physiological effects of Ganoderma lucidum. Biomed Dermatol 3:6

    Google Scholar 

  • Yilmaz N, Solmaz S, Türkekul I, Elmastaş M (2006) FA composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chem 99:168–174

    CAS  Google Scholar 

  • Yim HS, Chye FY, Rao V et al (2013) Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aq extract using response surface methodology. J Food Sci Technol 50:275–283

    CAS  PubMed  Google Scholar 

  • Yu J, Cui PJ, Zeng WL et al (2009) Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem 117:42–47

    CAS  Google Scholar 

  • Zapata P, Rojas D, Atehortúa L (2012) Production of biomass, polysaccharides, and GA using non-conventional carbon sources under submerged culture of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P. Karst. (higher Basidiomycetes). Int J Med Mushrooms 14:197–203

    CAS  PubMed  Google Scholar 

  • Zeković Z, Vidovic S, Mujić I (2010) Selenium and Zinc content and radical scavenging capacity of edible mushrooms Armilaria mellea and Lycoperdon saccatum. Croat J Food Sci Technol 2:16–21

    Google Scholar 

  • Zengin G, Sarikurkcu C, Gunes E et al (2015) Two Ganoderma species: profiling of phenolic compounds by HPLC–DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer’s disease and skin disorders. Food Funct 6:2794–2802

    CAS  PubMed  Google Scholar 

  • Zhang HN, He JH, Yuan L, Lin ZB (2003) In vitro and in vivo protective effect of Ganoderma lucidum polysaccharides on alloxan-induced pancreatic islets damage. Life Sci 73:2307–2319

    Google Scholar 

  • Zhang Z, Lv G, Pan H et al (2012) Antioxidant and hepatoprotective potential of endo-polysaccharides from Hericium erinaceus grown on tofu whey. Int J Biol Macromol 51:1140–1146

    CAS  PubMed  Google Scholar 

  • Zhang Y, Kong H, Fang Y et al (2013) Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioact Carbohydr Diet Fibre 1:53–71

    CAS  Google Scholar 

  • Zhang Y, Yang S, Wang A et al (2015) Protective effect of ethanol extracts of Hericium erinaceus on alloxan-induced diabetic neuropathic pain in rats. Evid Based Complement Alternat Med 2015:595480

    Google Scholar 

  • Zhang CC, Cao CY, Kubo M et al (2017) Chemical constituents from Hericium erinaceus promote neuronal survival and potentiate neurite outgrowth via the TrkA/Erk1/2 pathway. Int J Mol Sci 18:1659

    PubMed Central  Google Scholar 

  • Zhong K, Tong L, Liu L et al (2015) Immunoregulatory and antitumor activity of schizophyllan under ultrasonic treatment. Int J Biol Macromol 80:302–308

    CAS  PubMed  Google Scholar 

  • Zhou Y, Qua ZQ, Zeng YS et al (2012) Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus. Exp Toxicol Pathol 64:673–680

    PubMed  Google Scholar 

  • Zhou LW, Cao Y, Wu SH et al (2015) Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 114:7–15

    CAS  PubMed  Google Scholar 

  • Zhu F, Qu L, Fan W et al (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess 179:191–199

    CAS  PubMed  Google Scholar 

  • Živković J, Ivanov M, Stojković D, Glamočlija J (2021) Ethnomycological investigation in Serbia: astonishing realm of mycomedicines and mycofood. J Fungi 7:349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Karaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karaman, M., Čapelja, E., Rašeta, M., Rakić, M. (2022). Diversity, Chemistry, and Environmental Contamination of Wild Growing Medicinal Mushroom Species as Sources of Biologically Active Substances (Antioxidants, Anti-Diabetics, and AChE Inhibitors). In: Arya, A., Rusevska, K. (eds) Biology, Cultivation and Applications of Mushrooms . Springer, Singapore. https://doi.org/10.1007/978-981-16-6257-7_8

Download citation

Publish with us

Policies and ethics