Skip to main content

Recent Advances in the Discovery of Bioactive Metabolites from Xylaria Hill ex Schrank

  • Chapter
  • First Online:
Biology, Cultivation and Applications of Mushrooms

Abstract

Xylaria is the largest genus of the family Xylariaceae (Xylariales, Sordariomycetes) and presently consists of ca. 300 accepted species of stromatic pyrenomycetes. They are popularly known as dead man’s finger, have common distribution in soil, leaf litter, woody litter, and termite mounds. In addition, they also have mutualistic association as endophytes in tropical and temperate plant species. The xylarial stromata constitutes one of the important raw biomaterials in traditional Chinese and other ethnic medicinal systems. The genus Xylaria is a major source of a wide range of bioactive compounds (sesquiterpenoids, terpenoids, cytochalasins, mellein, alkaloids, polyketides, and aromatic compounds). Some of the metabolites of Xylaria deploy antibacterial, antifungal, anticancer, antimalarial, anti-inflammatory, and α-glucosidase inhibitory activities. The metabolites of Xylaria are also known for potential herbicidal, fungicidal, and insecticidal activities. Xylaria is known for the production of many volatile and non-volatile compounds and their volatiles are functional in various pharmaceutical and agricultural applications. This review covers the bioactive metabolites reported from different species of Xylaria and along with their source of origin and biological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora D, Sharma N, Singamaneni V, Sharma V et al (2016) Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine 23(12):1312–1320

    CAS  PubMed  Google Scholar 

  • Baraban EG, Morin JB, Phillips GM, Phillips AJ et al (2013) Xyolide, a bioactive nonenolide from an Amazonian endophytic fungus, Xylaria feejeensis. Tetrahedron Lett 54(31):4058–4060

    Google Scholar 

  • Boonphong S, Kittakoop P, Isaka M, Pittayakhajonwut D et al (2001) Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J Nat Prod 64(7):965–967

    CAS  PubMed  Google Scholar 

  • Casella TM, Eparvier V, Mandavid H, Bendelac A et al (2013) Antimicrobial and cytotoxic secondary metabolites from tropicalleaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377

    CAS  PubMed  Google Scholar 

  • Chaichanan J, Wiyakrutta S, Pongtharangkul T, Isarangkul D et al (2014) Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Braz J Microbiol 45(1):287–293

    PubMed  PubMed Central  Google Scholar 

  • Chang JC, Hsiao G, Lin RK, Ku YH, Ju YM et al (2017) Bioactive constituents from the termite nest-derived medicinal fungus Xylaria nigripes. J Nat Prod 80(1):38–44

    CAS  PubMed  Google Scholar 

  • Chapla VM, Zeraik ML, Cafeu MC, Silva GH et al (2018) Griseofulvin, Diketopiperazines and Cytochalasins from endophytic fungi Colletotrichum crassipes and Xylaria sp., and their antifungal, antioxidant and anticholinesterase activities. J Braz Chem Soc 29(8):1707–1713

    CAS  Google Scholar 

  • Chen HP, Li J, Zhao ZZ, Li X, Liu SL et al (2020a) Diterpenes with bicyclo [2.2.2] octane moieties from the fungicolous fungus Xylaria longipes HFG1018. Org Biomol Chem 18(13):2410–2415

    CAS  PubMed  Google Scholar 

  • Chen HP, Zhao ZZ, Cheng GG, Hanet ZK et al (2020b) Immunosuppressive nor-isopimarane diterpenes from cultures of the fungicolous fungus Xylaria longipes HFG1018. J Nat Prod 83(2):401–412

    CAS  PubMed  Google Scholar 

  • Chen MC, Wang GJ, Kuo YH, Chiang YR, Cho TY et al (2019) Isoprenyl phenolic ethers from the termite nest-derived medicinal fungus Xylaria fimbriata. J Food Drug Anal 27(1):111–117

    CAS  PubMed  Google Scholar 

  • Chen Z, Chen Y, Huang H, Yang H, Zhang W et al (2017) Cytochalasin P1, a new cytochalasin from the marine-derived fungus Xylaria sp. SOF11. Z Naturforsch C 72(3–4):129–132

    CAS  PubMed  Google Scholar 

  • Chen YS, Chang HS, Cheng MJ, Chan HY et al (2016) New chemical constituents from the endophytic fungus Xylaria papulis cultivated on Taiwanese Lepidagathis stenophylla. Records Nat Prod 10(6):735–743

    Google Scholar 

  • Chen WL, Turlova E, Sun CL, Kim JS et al (2015) Xyloketal B suppresses glioblastoma cell proliferation and migration in vitro through inhibiting TRPM7-regulated PI3K/Akt and MEK/ERK signaling pathways. Mar Drugs 13(4):2505–2525. https://doi.org/10.3390/md13042505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Huang H, Chen Y, Wang Z et al (2011) New cytochalasins from the marine-derived fungus Xylaria sp. SCSIO 156. Helv Chim Acta 94(9):1671–1676

    CAS  Google Scholar 

  • Dagne E, Gunatilaka AL, Asmellash S, Abate D et al (1994) Two new cytotoxic cytochalasins from Xylaria obovata. Tetrahedron 50(19):5615–5620

    CAS  Google Scholar 

  • Davis RA (2005) Isolation and structure elucidation of the new fungal metabolite (−)-xylariamide A. J Nat Prod 68(5):769–772

    CAS  PubMed  Google Scholar 

  • de Felício R, Pavão GB, de Oliveira ALL, Erbert C et al (2015) Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev Bras Farmacogn 25(6):641–650

    Google Scholar 

  • Deshmukh SK, Sridhar KR, Gupta MK (2021) Application of selected species of the genus Xylaria in traditional medicine. In Sridhar KR, Deshmukh SK (eds) Advances in macrofungi: pharmaceuticals and cosmeceuticals. CRC Press, pp 122–136.

    Google Scholar 

  • Deyrup ST, Gloer JB, O’Donnell K, Wicklow DT (2007) Kolokosides A− D: triterpenoid glycosides from a Hawaiian isolate of Xylaria sp. J Nat Prod 70(3):378–382

    CAS  PubMed  Google Scholar 

  • Ding X, Liu K, Zhang Y, Liu F (2017) De novo transcriptome assembly and characterization of the 10-hydroxycamptothecin-producing Xylaria sp. M71 following salicylic acid treatment. J Microbiol 55(11):871–876

    CAS  PubMed  Google Scholar 

  • Dwibedi V, Kalia S, Saxena S (2019) Isolation and enhancement of resveratrol production in Xylaria psidii by exploring the phenomenon of epigenetics: using DNA methyltransferases and histone deacetylase as epigenetic modifiers. Mol Biol Rep 46(4):4123–4137

    CAS  PubMed  Google Scholar 

  • Elias LM, Fortkamp D, Sartori SB, Ferreira MC et al (2018) The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose. Braz J Microbiol 49(4):840–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan NW, Chang HS, Cheng MJ, Hsieh SY et al (2014) Secondary metabolites from the endophytic fungus Xylaria cubensis. Helv Chim Acta 97(12):1689–1699

    CAS  Google Scholar 

  • Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S et al (2018) Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. Int J Food Microbiol 284:1–10

    CAS  PubMed  Google Scholar 

  • Fathoni A, Agusta A (2019) Bioproduction of cytochalasin D by endophytic fungus Xylaria sp. DAP KRI-5. J Appl Pharm Science 9(3):105–110

    CAS  Google Scholar 

  • Gu W, Ding H (2008) Two new tetralone derivatives from the culture of Xylaria hypoxylon AT-028. Chin Chem Lett 19(11):1323–1326

    CAS  Google Scholar 

  • Hu D, Li M (2017) Three new ergot alkaloids from the fruiting bodies of Xylaria nigripes (Kl.) Sacc. Chem Biodivers 14(1):e1600173

    Google Scholar 

  • Hu ZY, Li YY, Lu CH, Lin T et al (2010) Seven novel linear polyketides from Xylaria sp. NCY2. Helv Chim Acta 93(5):925–933

    CAS  Google Scholar 

  • Hu ZY, Li YY, Huang YJ, Su WJ et al (2008) Three new sesquiterpenoids from Xylaria sp. NCY2. Helv Chim Acta 91(1):46–52

    CAS  Google Scholar 

  • Huang R, Xie XS, Fang XW, Ma KX, Wu SH (2015) Five new guaiane sesquiterpenes from the endophytic fungus Xylaria sp. YM 311647 of Azadirachta indica. Chem Biodivers 12(8):1281–1286

    CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3405

    CAS  PubMed  Google Scholar 

  • Ibrahim A, Tanney JB, Fei F, Seifert KA et al (2020) Metabolomic-guided discovery of cyclic nonribosomal peptides from Xylaria ellisii sp. nov., a leaf and stem endophyte of Vaccinium angustifolium. Sci Rep 10(1):1–17

    Google Scholar 

  • Isaka M, Yangchum A, Supothina S, Chanthaket R, Srikitikulchai P (2014) Isopimaranes and eremophilanes from the wood-decay fungus Xylaria allantoidea BCC 23163. Phytochem Lett 8:59–64

    CAS  Google Scholar 

  • Isaka M, Yangchum A, Auncharoen P, Srichomthong K, Srikitikulchai P (2011) Ring B aromatic norpimarane glucoside from a Xylaria sp. J Nat Prod 74(2):300–302

    CAS  PubMed  Google Scholar 

  • Isaka M, Chinthanom P, Boonruangprapa T, Rungjindamai N, Pinruan U (2010) Eremophilane-type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J Nat Prod 73(4):683–687

    CAS  PubMed  Google Scholar 

  • Isaka M, Jaturapat A, Kladwang W, Punya J, Lertwerawat Y et al (2000) Antiplasmodial compounds from the wood-decayed fungus Xylaria sp. BCC 1067. Planta Med 66(05):473–475

    CAS  PubMed  Google Scholar 

  • Jang YW, Lee IK, Kim YS, Lee S, Lee HJ et al (2007) Xylarinic acids A and B, new antifungal polypropionates from the fruiting body of Xylaria polymorpha. J Antibiot 60(11):696–699

    CAS  Google Scholar 

  • Jayasuriya H, Herath KB, Ondeyka JG, Polishook JD et al (2004) Isolation and structure of antagonists of chemokine receptor (CCR5). J Nat Prod 67(6):1036–1038

    CAS  PubMed  Google Scholar 

  • Jiménez-Romero C, Ortega-Barría E, Arnold AE, Cubilla-Rios L (2008) Activity against Plasmodium falciparum of lactones isolated from the endophytic fungus Xylaria sp. Pharm Biol 46(10–11):700–703

    Google Scholar 

  • Jinghui L, Yingbao Y, Yongcheng L, Zhiliang C, Xiongyu W (2004) Effects of metabolites of mangrove fungus Xylaria sp. from South China Sea Coast on the activity of acetyl cholin esterase in vitro. J Chin Med Mater 27(4):261–264

    Google Scholar 

  • Kennedy TC, Webb G, Cannell RJ, Kinsman OS, Middleton RF, Sidebottom PJ, Taylor NL, Dawson MJ, Buss AD (1998) Novel inhibitors of fungal protein synthesis produced by a strain of Graphium putredinis. J Antibiot 51(11):1012–1018

    CAS  Google Scholar 

  • Kim CG, Kim TW, Endale M, Yayeh T et al (2010) Inhibition of nitric oxide production and mRNA expressions of proinflammatory mediators by xylarinic acid A in RAW 264.7 cells. J Med Plants Res 4(22):2370–2378

    CAS  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CABI Publishing, Wallingford

    Google Scholar 

  • Klaiklay S, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Buatong J et al (2012) Metabolites from the mangrove-derived fungus Xylaria cubensis PSU-MA34. Arch Pharm Res 35(7):1127–1131

    CAS  PubMed  Google Scholar 

  • Knowles SL, Raja HA, Isawi IH, Flores-Bocanegra L et al (2020) Wheldone: characterization of a unique scaffold from the Coculture of Aspergillus fischeri and Xylaria flabelliformis. Org Lett 22(5):1878–1882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko HJ, Song A, Lai MN, Ng LT (2011) Immunomodulatory properties of Xylaria nigripes in peritoneal macrophage cells of Balb/c mice. J Ethnopharmacol 138:762–768

    PubMed  Google Scholar 

  • Lei CW, Yang ZQ, Zeng YP, Zhou Y et al (2018) Xylastriasan A, a new cytochalasan from the fungus Xylaria striata. Nat Prod Res 32(1):7–13

    CAS  PubMed  Google Scholar 

  • Li J, Wang WX, Chen HP, Li ZH, He J et al (2019) (±)-Xylaridines A and B, highly conjugated alkaloids from the fungus Xylaria longipes. Org Lett 21(5):1511–1514

    CAS  PubMed  Google Scholar 

  • Li M, Xiong J, Huang Y, Wang LJ, Tang Y et al (2015) Xylapyrrosides A and B, two rare sugar-morpholine spiroketal pyrrolederived alkaloids from Xylaria nigripes: isolation, complete structure elucidation, and total syntheses. Tetrahedron 71(33):5285–5295

    CAS  Google Scholar 

  • Li Y, Lu C, Huang Y, Li Y, Shen Y (2012) Cytochalasin H2, a new cytochalasin, isolated from the endophytic fungus Xylaria sp. A23. Rec Nat Prod 6(2):121–126

    Google Scholar 

  • Liang Y, Xu W, Liu C, Zhou D, Liu X et al (2019) Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102. Nat Prod Res 33(9):1304–1309

    CAS  PubMed  Google Scholar 

  • Lin X, Yu M, Lin T, Zhang L (2016) Secondary metabolites of Xylaria sp., an endophytic fungus from Taxus mairei. Nat Prod Res 30(21):2442–2447

    CAS  PubMed  Google Scholar 

  • Lin Y, Wu X, Feng S, Jiang G, Luo J et al (2001) Five unique compounds: xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem 66(19):6252–6256

    CAS  PubMed  Google Scholar 

  • Linh DTP, Hien BTT, Que DD, Lam DM et al (2014) Cytotoxic constituents from the Vietnamese fungus Xylaria schweinitzii. Nat Prod Commun 9(5):659–660

    CAS  PubMed  Google Scholar 

  • Liu K, Ding X, Deng B, Chen W (2010) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol Lett 32(5):689–693

    CAS  PubMed  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78(2):241–247

    CAS  PubMed  Google Scholar 

  • Lu XL, Xu ZL, Yao XL, Su FJ, Ye CH et al (2012) Marine cyclotripeptide X-13 promotes angiogenesis in zebrafish and human endothelial cells via PI3K/Akt/eNOS signaling pathways. Mar Drugs 10(6):1307–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macías-Rubalcava ML, Sánchez-Fernández RE (2017) Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol 33(1):15

    PubMed  Google Scholar 

  • McCloskey S, Noppawan S, Mongkolthanaruk W, Suwannasai N et al (2017) A new cerebroside and the cytotoxic constituents isolated from Xylaria allantoidea SWUF76. Nat Prod Res 31(12):1422–1430

    CAS  PubMed  Google Scholar 

  • Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83

    Google Scholar 

  • Nagam V, Aluru R, Shoaib M, Dong GR, Li Z et al (2020) Diversity of fungal isolates from fungus-growing termite Macrotermes barneyi and characterization of bioactive compound from Xylaria escharoidea. Insect Sci. https://doi.org/10.1111/1744-7917.12799

  • Ngoc QD, Dinh BD (2008) Ergosta-4, 6, 8 (14), 22-tetraen-3-one from Vietnamese Xylaria sp. possessing inhibitory activity of nitric oxide production. Nat Prod Res 22(10):901–906

    Google Scholar 

  • Noppawan S, Mongkolthanaruk W, Suwannasai N, Senawong T, Moontragoon P et al (2020) Chemical constituents and cytotoxic activity from the wood-decaying fungus Xylaria sp. SWUF08-37. Nat Prod Res 34(4):464–473

    CAS  PubMed  Google Scholar 

  • Oliveira CM, Regasini LO, Silva GH, Pfenning LH (2011) Dihydroisocoumarins produced by Xylaria sp. and Penicillium sp.,endophytic fungi associated with Piper aduncum and Alibertia macrophylla. Phytochem Lett 4(2):93–96

    CAS  Google Scholar 

  • Paguigan ND, Al-Huniti MH, Raja HA, Czarnecki A et al (2017) Chemoselective fluorination and chemoinformatic analysis of griseofulvin: natural vs fluorinated fungal metabolites. Bioorg Med Chem 25(20):5238–5246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Choi GJ, Lee HB, Kim KM et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15(1):112–117

    CAS  Google Scholar 

  • Patjana T, Jantaharn P, Katrun P, Mongkolthanaruk W et al (2019) Anti-inflammatory and cytotoxic agents from Xylaria sp. SWUF09-62 fungus. Nat Prod Res 35:2010–2019

    PubMed  Google Scholar 

  • Pittayakhajonwut P, Usuwan A, Intaraudom C, Veeranondha S, Srikitikulchai P (2009) Sesquiterpene lactone 12, 8-eudesmanolides from the fungus Xylaria ianthinovelutina. Planta Med 75(13):1431–1435

    CAS  PubMed  Google Scholar 

  • Pittayakhajonwut P, Suvannakad R, Thienhirun S, Prabpai S, Kongsaeree P, Tanticharoen M (2005) An anti-herpes simplex virustype 1 agent from Xylaria mellisii (BCC 1005). Tetrahedron Lett 46(8):1341–1344

    CAS  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kühn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69(9):1900–1902

    CAS  PubMed  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Isaka M, Sriklung K (2007) Cytotoxic metabolites from the wood-decayed fungus Xylaria sp. BCC 9653. Chem Pharm Bull 55(11):1647–1648

    CAS  Google Scholar 

  • Quang DN, Bach DD, Hashimoto T, Asakawa Y (2006) Chemical constituents of the Vietnamese inedible mushroom Xylaria intracolorata. Nat Prod Res 20(04):317–321

    CAS  PubMed  Google Scholar 

  • Rakshith D, Santosh P, Pradeep TP, Gurudatt DM, Baker et al (2016) Application of bioassay-guided fractionation coupled with a molecular approach for the dereplication of antimicrobial metabolites. Chromatographia 79(23–24):1625–1642

    CAS  Google Scholar 

  • Ramm S, Krawczyk B, Mühlenweg A, Poch A, Mösker E, Süssmuth RD (2017) A self-sacrificing n-methyltransferase is the precursor of the fungal natural product omphalotin. Angew Chem Int Ed 56:9994–9997

    CAS  Google Scholar 

  • Ratnaweera PB, Williams DE, de Silva ED, Wijesundera RL, Dalisay DS, Andersen RJ (2014) Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 5(1):23–28

    PubMed  Google Scholar 

  • Rivera-Chávez J, Figueroa M, González MDC, Glenn AE, Mata R (2015) α-Glucosidase inhibitors from a Xylaria feejeensis associated with Hintonia latiflora. J Nat Prod 78(4):730–735

    PubMed  Google Scholar 

  • Salvatore MJ, Hensens OD, Zink DL, Liesch J et al (1994) L-741,494, a fungal metabolite that is an inhibitor of interleukin-1β converting enzyme. J Nat Prod 57(6):755–760

    CAS  PubMed  Google Scholar 

  • Sánchez-Ortiz BL, Sánchez-Fernández RE, Duarte G, Lappe-Oliveras P, Macías-Rubalcava ML (2016) Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB 3f3 isolated from Haematoxylon brasiletto. J Appl Microbiol 120(5):1313–1325

    PubMed  Google Scholar 

  • Sawadsitang S, Mongkolthanaruk W, Suwannasai N, Sodngam S (2015) Antimalarial and cytotoxic constituents of Xylaria cf. cubensis PK108. Nat Prod Res 29(21):2033–2036

    CAS  PubMed  Google Scholar 

  • Schüffler A, Sterner O, Anke H (2007) Cytotoxic alpha-pyrones from Xylaria hypoxylon. Z Naturforsch C J Biosci 62(3–4):169–172

    PubMed  Google Scholar 

  • Schneider G, Anke H, Sterner O (1996) Xylaramide, a new antifungal compound, and other secondary metabolites from Xylaria longipes. Z Naturforsch C 51(11–12):802–806

    CAS  PubMed  Google Scholar 

  • Schneider G, Anke H, Sterner O (1995) Xylarin, an antifungal Xylaria metabolite with an unusual tricyclic uronic acid moiety. Nat Prod Lett 7(4):309–316

    CAS  Google Scholar 

  • Shiono Y, Matsui N, Imaizumi T, Koseki T et al (2013) An unusual spirocyclic isopimarane diterpenoid and other isopimarane diterpenoids from fruiting bodies of Xylaria polymorpha. Phytochem Lett 6(3):439–443

    CAS  Google Scholar 

  • Shiono Y, Motoki S, Koseki T, Murayama T et al (2009) Isopimarane diterpene glycosides, apoptosis inducers, obtained from fruiting bodies of the ascomycete Xylaria polymorpha. Phytochemistry 70(7):935–939

    CAS  PubMed  Google Scholar 

  • Shiono Y, Murayama T (2005) New eremophilane-type sesquiterpenoids, eremoxylarins A and B from xylariaceous endophytic fungus YUA-026. Z Naturforsch B 60(8):885–890

    CAS  Google Scholar 

  • Silva GH, de Oliveira CM, Teles HL, Pauletti PM et al (2010a) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3(3):164–167

    CAS  Google Scholar 

  • Silva GH, De Oliveira CM, Teles HL, Araujo AR, Pfenning LH et al (2010b) Cytochalasins produced by Xylaria Sp., an endophytic fungus from Piper aduncum. Quim Nova 33(10):2038–2041

    CAS  Google Scholar 

  • Smith CJ, Morin NR, Bills GF, Dombrowski AW, Salituro GM et al (2002) Novel sesquiterpenoids from the fermentation of Xylaria persicariaare selective ligands for the NPY Y5 receptor. J Org Chem 67(14):5001–5004

    CAS  PubMed  Google Scholar 

  • Sodngam S, Sawadsitang S, Suwannasai N, Mongkolthanaruk W (2014) Chemical constituents, and their cytotoxicity, of the rare wood decaying fungus Xylaria humosa. Nat Prod Commun 9(2):157–158

    CAS  PubMed  Google Scholar 

  • Song A, Ko HJ, Lai MN, Ng LT (2011) Protective effects of Wu-Ling-Shen (Xylaria nigripes) on carbon tetrachloride-induced hepatotoxicity in mice. Immunopharmacol Immunotoxicol 33:454–460

    CAS  PubMed  Google Scholar 

  • Song F, Wu SH, Zhai YZ, Xuan QC, Wang T (2014) Secondary metabolites from the genus Xylaria and their bioactivities. Chem Biodivers 11(5):673–694

    CAS  PubMed  Google Scholar 

  • Song YX, Wang J, Li SW, Cheng B, Li L et al (2012a) Metabolites of the mangrove fungus Xylaria sp. BL321 from the South China Sea. Planta Med 78(02):172–176

    CAS  PubMed  Google Scholar 

  • Song Y, Wang J, Huang H, Ma L, Wang J et al (2012b) Four eremophilane sesquiterpenes from the mangrove endophytic fungus Xylaria sp. BL321. Mar Drugs 10(2):340–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorres J, Nirma C, Touré S, Eparvier V, Stien D (2015) Two new isopimarane diterpenoids from the endophytic fungus Xylaria sp. SNB-GTC2501. Tetrahedron Lett 56(31):4596–4598

    CAS  Google Scholar 

  • Strobel G (2011) Muscodor albus and its biological promise. Phytochem Rev 10:165–172

    Google Scholar 

  • Strobel G (2012) Muscodor albus–the anatomy of an important biological discovery. Microbiol Today 39:108–111

    Google Scholar 

  • Sun DW, Cao F, Liu M, Guan FF, Wang CY (2017) New fatty acid from a Gorgonian-derived Xylaria sp. Fungus. Chem Nat Compd 53(2):227–230

    CAS  Google Scholar 

  • Tansuwan S, Pornpakakul S, Roengsumran S, Petsom A, Muangsin N et al (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J Nat Prod 70(10):1620–1623

    CAS  PubMed  Google Scholar 

  • Tchoukoua A, Ota T, Akanuma R, Ju YM, Supratman U et al (2017a) A phytotoxic bicyclic lactone and other compounds from endophyte Xylaria curta. Nat Prod Res 31(18):2113–2118

    CAS  PubMed  Google Scholar 

  • Tchoukoua A, Suzuki T, Ariefta NR, Koseki T, Okawa Y et al (2017b) A new eremophilane sesquiterpene from the fungus Xylaria sp. V-27 and inhibition activity against degranulation in RBL-2H3 cells. J Antibiot 70(12):1129–1132

    CAS  Google Scholar 

  • Wang WX, Lei X, Ai HL, Bai X, Li J et al (2019a) Cytochalasans from the endophytic fungus Xylaria cf. curta with resistance reversal activity against fluconazole-resistant Candida albicans. Org Lett 21(4):1108–1111

    CAS  PubMed  Google Scholar 

  • Wang WX, Li ZH, Ai HL, Li J, He J et al (2019b) Cytotoxic 19, 20-epoxycytochalasans from endophytic fungus Xylaria cf. curta. Fitoterapia 137:104253

    CAS  PubMed  Google Scholar 

  • Wang WX, Lei X, Yang YL, Li ZH, Ai HL et al (2019c) Xylarichalasin A, a halogenated hexacyclic cytochalasan from the fungus Xylaria cf. curta. Org Lett 21(17):6957–6960

    CAS  PubMed  Google Scholar 

  • Wang WX, Feng T, Li ZH, Li J et al (2019d) Cytochalasins D1 and C1, unique cytochalasans from endophytic fungus Xylaria cf. curta. Tetrahedron Lett 60(34):150952

    CAS  Google Scholar 

  • Wang WX, Li ZH, He J, Feng T, Li J, Liu JK (2019e) Cytotoxic cytochalasans from fungus Xylaria longipes. Fitoterapia 137:104278

    CAS  PubMed  Google Scholar 

  • Wang WX, Cheng GG, Li ZH, Ai HL, He J et al (2019f) Curtachalasins, immunosuppressive agents from the endophytic fungus Xylaria cf. curta. Org Biomol Chem 17(34):7985–7994

    CAS  PubMed  Google Scholar 

  • Wang WX, Li ZH, Feng T, Li J et al (2018a) Curtachalasins A and B, two cytochalasans with a tetracyclic skeleton from the endophytic fungus Xylaria curta E10. Org Lett 20(24):7758–7761

    CAS  PubMed  Google Scholar 

  • Wang P, Cui Y, Cai CH, Kong FD, Chen HQ, Zhou LM et al (2018b) A new cytochalasin derivative from the mangrove-derived endophytic fungus Xylaria sp. HNWSW-2. J Asian Nat Prod Res 20(10):1002–1007

    CAS  PubMed  Google Scholar 

  • Wang J, Xu CC, Tang H, Su L, Chou Y, Soong K et al (2018c) Osteoclastogenesis inhibitory polyketides from the spongeassociated fungus Xylaria feejeensis. Chem Biodivers 15(12):–e1800358

    Google Scholar 

  • Wang LW, Wang GP, Tang T, Xing WX, Zheng W et al (2014) An endophytic fungus in Ficus carica and its secondary metabolites. Mycosystema 5:19

    CAS  Google Scholar 

  • Wei H, Xu YM, Espinosa-Artiles P, Liu MX et al (2015) Sesquiterpenes and other constituents of Xylaria sp. NC1214, a fungal endophyte of the moss Hypnum sp. Phytochemistry 118:102–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SH, He J, Li XN, Huang R, Song F et al (2014) Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry 105:197–204

    CAS  PubMed  Google Scholar 

  • Wu W, Dai H, Bao L, Ren B, Lu J, Luo Y et al (2011) Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod 74(5):1303–1308

    CAS  PubMed  Google Scholar 

  • Wu XY, Liu XH, Lin YC, Luo JH, She ZG et al (2005) Xyloketal F: a strong L-calcium channel blocker from the mangrove fungus Xylaria sp. (# 2508) from the South China Sea Coast. Eur J Org Chem 2005(19):4061–4064

    Google Scholar 

  • Wu G (2001) A study on DPPH free-radical scavengers from Xylaria nigripes. Acta Microbiol Sin 41(3):363–366

    CAS  Google Scholar 

  • Xiao AJ, Chen W, Xu B, Liu R, Turlova et al (2015) Marine compound xyloketal B reduces neonatal hypoxic-ischemic brain injury. Mar Drugs 13(1):29–47

    Google Scholar 

  • Xiong J, Huang Y, Wu XY, Liu XH, Fan H et al (2016) Chemical constituents from the fermented mycelia of the medicinal fungus Xylaria nigripes. Helv Chim Acta 99(1):83–89

    CAS  Google Scholar 

  • Xu WF, Hou XM, Yao FH, Zheng N, Li J et al (2017) Xylapeptide A, an antibacterial cyclopentapeptide with an uncommon L-pipecolinic acid moiety from the associated fungus Xylaria sp.(GDG-102). Sci Rep 7(1):1–8

    Google Scholar 

  • Xu F, Pang J, Lu B, Wang J, Zhang Y et al (2009) Two metabolites with DNA-binding affinity from the mangrove fungus Xylaria sp.(# 2508) from the South China Sea Coast. Chin J Chem 27(2):365–368

    CAS  Google Scholar 

  • Yan S, Li S, Wu W, Zhao F, Bao L et al (2011) Terpenoid and phenolic metabolites from the fungus Xylaria sp. associated with termite nests. Chem Biodivers 8(9):1689–1700

    CAS  PubMed  Google Scholar 

  • Yang NN, Kong FD, Ma QY, Huang SZ et al (2017) Drimane-type sesquiterpenoids from cultures of the fungus Xylaria polymorpha. Phytochem Lett 20:13–16

    CAS  Google Scholar 

  • Yin X, Feng T, Li ZH, Su J, Li Y et al (2011) Chemical investigation on the cultures of the fungus Xylaria carpophila. Nat Prod Bioprospect 1(2):75–80

    CAS  PubMed Central  Google Scholar 

  • Yu G, Sun Z, Peng J, Zhu M, Che Q, Zhang G et al (2019) Secondary metabolites produced by combined culture of Penicillium crustosum and a Xylaria sp. J Nat Prod 82(7):2013–2017

    CAS  PubMed  Google Scholar 

  • Zhang J, Liang JH, Zhao JC, Wang YL, Dong PP et al (2018) Xylarianins AD from the endophytic fungus Xylaria sp. SYPF 8246 as natural inhibitors of human carboxylesterase 2. Bioorg Chem 81:350–355

    CAS  PubMed  Google Scholar 

  • Zhang H, Deng Z, Guo Z, Peng Y, Huang N et al (2015) Effect of culture conditions on metabolite production of Xylaria sp. Molecules 20(5):7940–7950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Xiao J, Sun QQ, Qin JC, Pescitelli G, Gao JM (2014) Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. J Agric Food Chem 62(45):10962–10969

    CAS  PubMed  Google Scholar 

  • Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95:127–139

    CAS  Google Scholar 

  • Zheng N, Liu Q, He DL, Liang Y, Li J, Yang RY (2018a) A new compound from the endophytic fungus Xylaria sp. from Sophora tonkinensis. Chem Nat Compd 54(3):447–449

    CAS  Google Scholar 

  • Zheng N, Yao F, Liang X, Liu Q, Xu W et al (2018b) A new phthalide from the endophytic fungus Xylaria sp. GDG-102. Nat Prod Res 32(7):755–760

    CAS  PubMed  Google Scholar 

  • Zhao Z, Li Y, Chen H, Huang L, Zhao F et al (2014) Xylaria nigripes mitigates spatial memory impairment induced by rapid eye movement sleep deprivation. Int J Clin Exp Med 7:356–362

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deshmukh, S.K., Sridhar, K.R., Saxena, S., Gupta, M.K. (2022). Recent Advances in the Discovery of Bioactive Metabolites from Xylaria Hill ex Schrank. In: Arya, A., Rusevska, K. (eds) Biology, Cultivation and Applications of Mushrooms . Springer, Singapore. https://doi.org/10.1007/978-981-16-6257-7_3

Download citation

Publish with us

Policies and ethics