Skip to main content

Beauty, Diversity, and Potential Uses of Certain Macrofungi

  • Chapter
  • First Online:
  • 1251 Accesses

Abstract

Macrofungi are diverse in their uses as good source of protein in our diet, nutraceuticals, cosmeceuticals medicine, and for making beautiful art pieces. Several species serve as decomposers and many form mycorrhizal associations with plants. The commercial cultivation of several macrofungi has been steadily increasing globally. Cultivation of Cordyceps militaris can be done in a variety of media including silkworm pupae, rice, or liquid nutrition. Macrofungi are diverse with complex and highly varied growth conditions and bioactive constituents, most macro-fungal resources have not yet been fully explored and implicated, leading to an urgent need for appropriate strategies to address the problem. Increasing attention has been paid to the cultivation and application, of these fungi as potential probiotics. The accumulated secondary metabolites in medicinal mushrooms have been widely accepted as sources of safe and effective nutraceuticals, cosmeceuticals, and pharmaceuticals. Various mushrooms are utilized as foods appreciated for their exquisite flavour and are used extensively for their medicinal properties.

Recently, we saw how an invisibly small entity an ultramicroscopic virus created a turmoil in dynamic ecosystem of the planet Earth and caused the human societies to grind to a halt. Of course, human lives have pivoted around the metabolic ingenuity of fungi for a long time and these organisms can still be the tools to learn the intricacies of life, their mutualistic behaviour with other organisms and potential to produce a large number of secondary metabolites useful to fight diseases and providing good memory and better health are our present day concerns. Entangled body of tubes can teach the lessons of human survival in this crucial time of Corona pandemic. These macrofungi could modulate immune cell’s response and possess antimicrobial, antioxidants, and anticancer properties. In Western Ghats as well as Himalayan mountain ranges of India, the lush green vegetation supports a variety of naturally occurring macrofungi. Brief details of some of the well-known fungi found in India, Macedonia, and other parts of the world are highlighted in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexopoulos CJ, Mims CW, Blackwell MM (1996) Introductory mycology, 4th edn. Wiley, New York

    Google Scholar 

  • Arora D (1986) Mushrooms demystified: a comprehensive guide to the fleshy fungi. Ten Speed Press, Berkeley, p 936

    Google Scholar 

  • Arya A (2004) In: Srivastava PC (ed) Vistas in palaeobotany and plant morphology: evolutionary and environmental perspectives, Prof D D Pant Memorial Vol. UP Offset, Lucknow, pp 321–327

    Google Scholar 

  • Arya C, Arya A (2003) Effect of acid hydrolysis of substrate on the yield of oyster mushroom (Pleurotus sajor-caju (Fr.) Singer). Mushroom Res 12(1):35–38

    Google Scholar 

  • Atri NS, Saini SS, Gupta AK, Kaur A, Kour H, Saini SS (2010) Documentation ofwild edible mushrooms and their seasonal availability in Punjab. In: Mukerji KG, Manoharachary C (eds) Taxonomy and ecology of Indian fungi. I.K. International Publishing House Pvt. Ltd., New Delhi, pp 161–169

    Google Scholar 

  • Atri NS, Sharma S, Saini MK, Das K (2016) Researches on Russulaceous mushrooms-an appraisal. Kavaka 47:63–82

    Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78A–87A

    CAS  PubMed  Google Scholar 

  • Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR (2008) Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46:2742–2747

    CAS  PubMed  Google Scholar 

  • Bernicchia A, Savino E, Gorjón SP (2007) Aphyl-lophoraceous wood-inhabiting fungi on Pinus spp. in Italy. Mycotaxon 101:5–8

    Google Scholar 

  • Bhattacharjee B, Roy A, Majumder AL (1993) Carboxymethyl cellulase from Lenzites saepiaria, a brown-rotter. Int J Biochem Mol Biol 30(6):1143–1152

    CAS  Google Scholar 

  • Bilgrami KS, Jamalludin, Rizvi AM (1991) Fungi of India. Today and Tomorrow’s Printers and Publishers, New Delhi, p 798

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207. https://doi.org/10.1006/eesa.1999.1860

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:4470–4459

    Google Scholar 

  • Carroll L (1865) Alice in Alice’s Adventures in Wonderland (1865). Simon & Schuster, New York

    Google Scholar 

  • Chang ST, Miles PG (2004) Mushroom: cultivation, nutritional value, medicinal effect, and environmental impact, Boca Raton, CRC Press, p 451

    Google Scholar 

  • Cheung PCK (2010) The nutritional and health benefits of mushrooms. Nutr Bull 35:292–299

    Google Scholar 

  • Childs NM, Poryzees GH (1997) Foods that help prevent disease; consumer attitudes and public policy implications. Br Food J 9:419–426

    Google Scholar 

  • Deng G, Lin H, Seidman A (2009) A phase I/II trial of polysaccharide extracts from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol 135(9):1215–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desjardin DE, Perry BA, Lodge DJ, Luquillo Stevani CV, Nagasawa E (2010) Luminescent Mycena: new and noteworthy species. Mycologia 102(2):459–477. https://doi.org/10.3852/09-197#2010

    Article  PubMed  Google Scholar 

  • El-Batal AI, El-Kenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus streatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39

    Google Scholar 

  • Elsa C, Gerald SR, Eve T, Serge GSA, Tenailleau E, Akoka S (2007) Precise and accurate quantitative 13C NMR with reduced experimental time. Talanta 71:1016–1021

    Google Scholar 

  • Enow E (2013) Diversity and distribution of macrofungi (mushrooms) in the Mount Cameroon Region. J Ecol Nat Environ 5(10):318–334

    Google Scholar 

  • Findlay WPK (1982) Fungi: folklore, fiction, & fact. Mad River Press, Eureka

    Google Scholar 

  • Florian H, Zakaria C-A, Tim L, Jose GM-V, Helge BB, Meike P (2016) Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry 127:29–37

    Google Scholar 

  • Gadgil PD (2005) Fungi on trees and shrubs in New Zealand. In: Fungi of New Zealand, fungal diversity research series 16, vol 4. Fungal Diversity Press, Hong Kong, pp 437–458

    Google Scholar 

  • Gao YH, Zhou SF, Chen GL, Dai XH, Ye JX (2002) A phase I/II study of a Ganoderma lucidum extract (Ganopoly) in patients with advanced cancer. Int J Med Mushrooms 4:207–214

    Google Scholar 

  • Ghisalberti EL (1993) Detection and isolation of bioactive natural products. In: Colegate SM, Molyneux RJ (eds) Bioactive natural products: detection, isolation and structural determination. CRC, Boca Raton

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota. Introducing the concept of prebiotics. Nutrition 125:1401–1412

    CAS  Google Scholar 

  • Grimm D, Wosten AB (2018) Mushroom cultivation in circular economy. Appl Microbiol Biotechnol 102:7795–7803. https://doi.org/10.1007/s00253-018-9226-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halpern GM (2007) Heeling mushrooms : ancient wisom for better health. Squaew One Publishers, New York, 185p

    Google Scholar 

  • Han J, Chen Y, Li B, Yang X, Liu D, Li S, Zhao F, Liu H (2012) Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia 84:22–31. https://doi.org/10.1016/j.fitote.2012.10.001. Epub 2012 Oct 14

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (1974) Mycologist’s handbook. Commonwealth Agricultural Bureau, Slough, p 231

    Google Scholar 

  • Hawksworth DL (2001) Mushrooms: the extent of the unexplored potential. Int J Med Mushrooms 3:1–5

    Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Karunarathna SC, Chen J, Mortimer PE, Xu JC, Zhao RL, Callac P, Hyde KD (2016) Mycosphere essay 8: a review of genus Agaricus in tropical and humid subtropical regions of Asia. Mycosphere 7(4):417–439

    Google Scholar 

  • Kasischke L (2016) The infinitesimals. Copper Canyon Press. www.laurakasischke.com/

    Google Scholar 

  • Kaur H, Kaur M, Malik NA (2017) New additions to the genus Agaricus (Agaricaceae, Agaricales) from Northwest India. Kavaka 48(2):84–94

    Google Scholar 

  • Kim DJ, Ferrin DL, Rao HR (2009) Trust and satisfaction, the two wheels for successful e-commerce transactions: a longitudinal exploration. Inf Syst Res 20(2):237–257

    Google Scholar 

  • Kirk PM (2016) Species fungorum. In: Species 2000 and integrated taxonomic information system (ITIS), catalogue of life. Version 23rd. Naturalis, Leiden, pp 107–111

    Google Scholar 

  • Kozarski M, Klaus A, Niksic M, Vrvic MM, Todorovic N, Jakovljevic D, van Griensven LJLD (2012) Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J Food Compos Anal 26:144–153

    CAS  Google Scholar 

  • Krüzselyia D, Ágnes M, Móricza M, Vetter J (2020) Comparison of different morphological mushroom parts based on the antioxidant activity. Food Sci Technol 127:109436. https://doi.org/10.1016/j.lwt.2020.109436

    Article  CAS  Google Scholar 

  • Lallawmsanga LVV, Passari AK, Mishra VK, Leo VV, Singh BP, Meyyappan GV (2016) Antimicrobial potential, identification and phylogenetic affiliation of wild mushrooms from two sub-tropical semi-evergreen Indian forest ecosystems. PLoS One 11(11):e0166368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lallawmsanga LVV, Passari AK, Muniraj IK, Uthandi S, Hashem A, Abd-Allah EF (2018) Elevated levels of laccase synthesis by Pleurotus pulmonarius BPSM10 and its potential as a dye decolorizing agent. Saudi J Biolo Scie 26(3):464–468

    Google Scholar 

  • Leatham GF (1982) Cultivation of shiitake, the Japanese forest mushroom, on logs: a potential industry for the United States. For Prod J 32:29–35

    Google Scholar 

  • Leiva FJ, Saenz-diez JC, Martinez E, Jimenez E, Blanco J (2015) Environmental impact of Agaricus bisporus cultivation process. Eur J Agron 71:141–148

    Google Scholar 

  • Lindequist U, Niedermeyer T, Jülich W (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2(3):285–299

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Wang JL, Gong WZ, Xiao X, Wang Q (2012) Antioxidant activities in vitro of ethanol extract and fractions from mushroom, Lenzites betulina. J Food Biochem 37(6):687–693

    Google Scholar 

  • Lorenzen K, Anke T (1998) Basidiomycetes as a source for new bioactive natural products. Curr Organ Chem 2:329–364

    CAS  Google Scholar 

  • Lowy B (1974) Amanita muscaria and the thunderbolt legend in Guatemala and Mexico. Mycologia 66(1):188–191

    CAS  PubMed  Google Scholar 

  • Lucas EH, Montesano R, Pepper MS, Hafner M, Sablon E (1957) Tumor inhibitors in Boletus edulis and other holobasidiomycetes. Antibiot Chemother 7:1–4

    CAS  Google Scholar 

  • Maia LC, Aníbal A, de Carvalho Júnior AA (2015) Diversity of Brazilian fungi. Rodriguésia 66(4):1033–1045. https://doi.org/10.1590/2175-7860201566407. http://rodriguesia.jbrj.gov.br

    Article  Google Scholar 

  • Marston A, Hostettmann K (1991) Modern separation methods. Nat Prod Rep 8:391–413

    CAS  Google Scholar 

  • Masuda Y, Murata Y, Hayashi M, Nanba H (2008) Inhibitory effect of MD-fraction on tumor metastasis: involvement of NK cell activation and suppression of intercellular adhesion molecule (ICAM)-1 expression in lung vascular endothelial cells. Biol Pharm Bull 31(6):1104–1124

    CAS  PubMed  Google Scholar 

  • Mau JL, Chang CN, Huang SJ, Chen CC (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87:111–118

    CAS  Google Scholar 

  • Mo S, Wang S, Zhou G, Yang Y, Li Y, Chen X (2003) Phelligridins C-F:cytotoxic pyrano[4,3-c][2]benzopyran-1,6-dione and furo[3,2-c]pyran-4-one derivatives from the fungus Phellinus igniarius. J Nat Prod 67:823–828

    Google Scholar 

  • Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes DJ, Kurt H, Teresa I, Karl-Henrik LD, Jean L, Tom WM, David M, Mario R, Scott AR, Leif R, James MT, Roy W, Qiuxin W (2007) Global diversity and distribution of macrofungi. Biodivers Conserv 16:37–48

    Google Scholar 

  • Nagadesi PK, Arya A (2014) New records of Lignicolous Fungi from Ratanmahal wildlife sanctuary, Gujarat, India. International Letters of Natural Sciences, 3

    Google Scholar 

  • Nobre T, Fernandes C, Boomsma JJ, Korb J, Aanen DK (2011) Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol Ecol 20:2023–2033. https://doi.org/10.1111/j.1365-294X.2011.05064.X

    Article  PubMed  Google Scholar 

  • Okhuoya J, Akpaja E, Osemwegie O, Oghenekaro A, Ihayere C (2010) Nigerian mushrooms: underutilized non-wood forest resources. J Appl Sci Environ Manag 14(1):43–54

    Google Scholar 

  • Pegler DN (1983) The genus Lentinula (Tricholomataceae tribe Collybieae). Sydowia 36:227–239

    Google Scholar 

  • Philips N, Roger F (2006) Mushrooms, 6th edn. Macmillan, London, 266p

    Google Scholar 

  • Polat E, Uzun H, Topcuo B, Onal K, Onus AN (2009) Effect of spent mushroom compost on quality and productivity of cucumber (Cucumis sativus L.) grown in greenhouses. Afr J Biotechnol l8:176–180

    Google Scholar 

  • Pople JA, Bernstein HJ, Schneider WG (1957) The analysis of nuclear magnetic resonanace spectra. Can J Chem 35:65–81

    Google Scholar 

  • Purves WK, Orians GH, Heller HCR (1994) Life: the science of biology, 4th edn. Sinauer Associates

    Google Scholar 

  • Rajarathnam S, Sashirekha MN (2003) Use of wild mushrooms. In: Mushrooms and truffles/use of wild mushrooms. Elsevier, Amsterdam, pp 4048–4054

    Google Scholar 

  • Rathore H, Prasad S, Sharma S (2017) Mushroom nutraceuticals for improved nutrition and better human health: a review. Pharma Nutr 5:35–46. https://doi.org/10.1016/j.phanu.2017.02.001

    Article  Google Scholar 

  • Regulo CLH, Michele LL, Anne Marie F, Marie FO, Nathalie F, Catherine RR (2013) Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost. World J Microbiol Biotechnol 29(7):1243–1253

    Google Scholar 

  • Ribeiro B, Lopes R, Andrade PB, Seabra RM, Goncalves RF, Baptista P, Quelhas I, Valentao P (2008) Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chem 110:47–56

    CAS  PubMed  Google Scholar 

  • Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermtinae. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic, Dordrecht, pp 731–756

    Google Scholar 

  • Ryvarden, Gilbertson RL (1993) European polypores (2 vols). ISBN 82-00724-12-8 (pt 1)

    Google Scholar 

  • Servi H, Akata IBC (2010) Macrofungal diversity of bolu abant nature park (Turkey). Afr J Biotechnol 9(24):3622–3628

    Google Scholar 

  • Shakespeare W (2004) In: Mowat BA, Werstine P (eds) The Tempest. Simon & Schuster, New York (originally pub. 1623)

    Google Scholar 

  • Sheldrake M (2020)Fungi’s lessons for adapting to life on a damaged planet (Sheldrake M in conversation with Macfarlane R) Literary Hub, 12 May 2020

    Google Scholar 

  • Smith AH (1947) North American species of Mycena. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Stamets P (2000) Growing gourmet and medicinal mushrooms, 3rd edn. Ten Speed Press, Berkeley, CA, pp 259–276

    Google Scholar 

  • Stamets P (2005) Notes on nutritional properties of culinary-medicinal mushrooms. Int J Med Mushrooms:103–110

    Google Scholar 

  • Taylor DJ, Green NPO, Stout GW, Soper R (1998) Text book of biological science. University Press, Cambridge, p 984

    Google Scholar 

  • Taylor TN, Krings M, Tayor EL (2015) Fossil fungi. Academic, Burlington

    Google Scholar 

  • Thatoi H, Patra JK (2018) Prebiotics and their production from unconventional raw materials (mushrooms). In: Therapeutic, probiotic, and unconventional foods

    Google Scholar 

  • Thatoi H, Singdevsachan SK (2014) Diversity nutritional composition and medicinal potential of Indian mushrooms: a review. Afr J Biotechnol 13:523–545

    CAS  Google Scholar 

  • Thomas JV, Leonard TJ (1990) Cytology of the life cycle of Morchella. Mycol Res 94:399–406

    Google Scholar 

  • Upadhyay RC, Verma B, Sood S, Atri NS, Lakhanpal TN, Sharma VP (2017) Documentary of Agaricomycetous mushrooms of India. Jaya Publishing House, New Delhi, 193p

    Google Scholar 

  • Wang J, Wang HX, Ng TB (2007) A petide with HIV-I reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 28(3):560–565

    PubMed  Google Scholar 

  • Webster J, Webster RS (1997) Teaching techniques for mycology I. The bird’s nest fungus Cyathus stercoreus. Mycologist 11(3):103–105

    Google Scholar 

  • Wei TZ, Yao YJ (2003) Literature review of Termitomyces species in China. Fungal Sci 22:39–54

    Google Scholar 

  • www.poemhunter.com/poem/mushrooms-11

  • Xu Z, Yan S, Bi K, Han J, Chen Y, Wu Z, Chen Y, Hongwei Liu H (2013) Isolation and identification of a new anti-inflammatory cyathane diterpenoid from the medicinal fungus Cyathus hookeri Berk. Fitoterapia 86:159–162. https://doi.org/10.1016/j.fitote.2013.03.002. Epub 2013 Mar 14

    Article  CAS  PubMed  Google Scholar 

  • Yeh JY, Hsieh LH, Wu KT, Tsai CF (2011) Antioxidant properties and antioxidant compounds of various extracts from the edible basidiomycete Grifola frondosa (Maitake). Molecules 16:3197–3211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zabel RA, Jeffrey J, Morrell JJ (2020) Introduction to wood microbiology. In: Wood microbiology, 2nd edn. Academic Press, Boca Raton, pp 1–18. https://doi.org/10.1016/B978-0-12-819465-2.00001-2

    Chapter  Google Scholar 

  • Zadrazil F (1974) Mushroom science IX (part I). In: Proceedings of the 9th international scientic congress on the cultivation of edible fungi, Tokyo, pp 621–652

    Google Scholar 

  • Zhang JJ, Li Y, Zhou T (2016) Bioactivities and health benefits of mushrooms mainly from China. Molecules 21(7):938

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1.1

(DOCX 2945 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, S. (2022). Beauty, Diversity, and Potential Uses of Certain Macrofungi. In: Arya, A., Rusevska, K. (eds) Biology, Cultivation and Applications of Mushrooms . Springer, Singapore. https://doi.org/10.1007/978-981-16-6257-7_1

Download citation

Publish with us

Policies and ethics