Skip to main content

Attribute-Assisted Heterogeneous Graph Representation

  • Chapter
  • First Online:
Heterogeneous Graph Representation Learning and Applications

Abstract

The previous heterogeneous graph representation methods mainly focus on preserving the complex interactions and rich semantics into node representation. As a matter of fact, diverse types of nodes in heterogeneous graph are assisted with different attributes, providing valuable side information for depicting the characteristics of nodes. Integrating attribution information is also desired for heterogeneous graph representation in a real-world application. Fortunately, heterogeneous graph neural networks naturally provide an alternative way to achieve this, meanwhile, have powerful representation ability. In this chapter, we introduce three attribute-assisted heterogeneous graph representation models including heterogeneous graph attention network (HAN), heterogeneous graph propagation network (HPN), and heterogeneous graph structure learning (HGSL), which simultaneously utilize both complex structural information and rich attribute information to learn node representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://dblp.uni-trier.de.

  2. 2.

    http://dl.acm.org/.

  3. 3.

    https://www.kaggle.com/carolzhangdc/imdb-5000-moviedataset.

  4. 4.

    https://github.com/Jhy1993/HAN.

  5. 5.

    Xintao Wu, Daniel Barbara, Yong Ye. Screening and Interpreting Multi-item Associations Based on Log-linear Modeling, KDD’03.

  6. 6.

    Xintao Wu, Jianpin Fan, Kalpathi Subramanian. B-EM: a classifier incorporating bootstrap with EM approach for data mining, KDD’02.

  7. 7.

    Daniel Barbara, Carlotta Domeniconi, James P. Rogers. Detecting outliers using transduction and statistical testing, KDD’06.

  8. 8.

    Walid G. Aref, Daniel Barbara, Padmavathi Vallabhaneni. The Handwritten Trie: Indexing Electronic Ink, SIGMOD’95.

  9. 9.

    Daniel Barbara, Tomasz Imielinski. Sleepers and Workaholics: Caching Strategies in Mobile Environments, VLDB’95.

  10. 10.

    Hector Garcia-Holina, Daniel Barbara. The cost of data replication, SIGCOMM’81.

  11. 11.

    https://www.yelp.com.

  12. 12.

    http://dl.acm.org/.

  13. 13.

    https://www.kaggle.com/carolzhangdc/imdb-5000-moviedataset.

  14. 14.

    https://grouplens.org/datasets/movielens/.

  15. 15.

    https://www.yelp.com.

  16. 16.

    http://dl.acm.org/.

  17. 17.

    https://dblp.uni-trier.de.

  18. 18.

    https://github.com/Andy-Border/HGSL.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations (2015)

    Google Scholar 

  2. Chen, T., Sun, Y.: Task-guided and path-augmented heterogeneous network embedding for author identification. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 295–304 (2017)

    Google Scholar 

  3. Chen, Y., Wu, L., Zaki, M.J.: Deep iterative and adaptive learning for graph neural networks. Preprint. arXiv:1912.07832 (2019)

    Google Scholar 

  4. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  5. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  6. Fan, S., Zhu, J., Han, X., Shi, C., Hu, L., Ma, B., Li, Y.: Metapath-guided heterogeneous graph neural network for intent recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2478–2486. ACM, New York (2019)

    Google Scholar 

  7. Franceschi, L., Niepert, M., Pontil, M., He, X.: Learning discrete structures for graph neural networks. In: International Conference on Machine Learning, pp. 1972–1982 (2019)

    Google Scholar 

  8. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of The Web Conference, pp. 2331–2341 (2020)

    Google Scholar 

  9. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  10. Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embedding logical queries on knowledge graphs. In: Advances in Neural Information Processing Systems, pp. 2030–2041 (2018)

    Google Scholar 

  11. Hong, H., Guo, H., Lin, Y., Yang, X., Li, Z., Ye, J.: An attention-based graph neural network for heterogeneous structural learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4132–4139 (2020)

    Google Scholar 

  12. Hu, B., Fang, Y., Shi, C.: Adversarial learning on heterogeneous information networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 120–129 (2019)

    Google Scholar 

  13. Hu, L., Yang, T., Shi, C., Ji, H., Li, X.: Heterogeneous graph attention networks for semi-supervised short text classification. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, pp. 4820–4829 (2019)

    Google Scholar 

  14. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: Proceedings of The Web Conference 2020, pp. 2704–2710 (2020)

    Google Scholar 

  15. Ji, H., Wang, X., Shi, C., Wang, B., Yu, P.: Heterogeneous graph propagation network. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  16. Jiang, B., Zhang, Z., Lin, D., Tang, J., Luo, B.: Semi-supervised learning with graph learning-convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11313–11320 (2019)

    Google Scholar 

  17. Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., Tang, J.: Graph structure learning for robust graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 66–74 (2020)

    Google Scholar 

  18. Keyulu, X., Chengtao, L., Yonglong, T., Tomohiro, S., Ken-ichi, K., Stefanie, J.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462 (2018)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  20. Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  21. Klicpera, J., Bojchevski, A., Gunnemann, S.: Predict then propagate: graph neural networks meet personalized pagerank. In: International Conference on Learning Representations (2019)

    Google Scholar 

  22. Lee, S., Park, S., Kahng, M., Lee, S.-G.: PathRank: ranking nodes on a heterogeneous graph for flexible hybrid recommender systems. Expert Syst. Appl. 40(2), 684–697 (2013)

    Article  Google Scholar 

  23. Li, X., Wu, Y., Ester, M., Kao, B., Wang, X., Zheng, Y.: Semi-supervised clustering in attributed heterogeneous information networks. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1621–1629 (2017)

    Google Scholar 

  24. Lu, Y., Shi, C., Hu, L., Liu, Z.: Relation structure-aware heterogeneous information network embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4456–4463 (2019)

    Google Scholar 

  25. Pei, H., Wei, B., Chang, K.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  26. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  27. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  28. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: European Semantic Web Conference, pp. 593–607. Springer, Berlin (2018)

    Google Scholar 

  29. Shang, J., Qu, M., Liu, J., Kaplan, L.M., Han, J., Peng, J.: Meta-path guided embedding for similarity search in large-scale heterogeneous information networks. CoRR abs/1610.09769 (2016)

    Google Scholar 

  30. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2018)

    Article  Google Scholar 

  31. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. VLDB 4(11), 992–1003 (2011)

    Google Scholar 

  32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Neural Information Processing Systems (NIPS 2017), pp. 5998–6008 (2017)

    Google Scholar 

  33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  34. Wang, X., He, X., Wang, M., Feng, F., Chua, T.-S.: Neural graph collaborative filtering. In: SIGIR’19: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)

    Google Scholar 

  35. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention network. In: The World Wide Web Conference, pp. 2022–2032 (2019)

    Google Scholar 

  36. Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J.: AM-GCN: adaptive multi-channel graph convolutional networks. In: Gupta, R., Liu, Y., Tang, J., Prakash, B.A. (eds.) Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020)

    Google Scholar 

  37. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  38. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks. In: Advances in Neural Information Processing Systems, pp. 11960–11970 (2019)

    Google Scholar 

  39. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 793–803 (2019)

    Google Scholar 

  40. Zhang, C., Swami, A., Chawla, N.V.: SHNE: representation learning for semantic-associated heterogeneous networks. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 690–698 (2019)

    Google Scholar 

  41. Zhao, J., Wang, X., Shi, C., Hu, B., Song, G., Ye, Y.: Heterogeneous graph structure learning for graph neural networks. In: 35th AAAI Conference on Artificial Intelligence (AAAI) (2021)

    Google Scholar 

  42. Zhao, J., Wang, X., Shi, C., Liu, Z., Ye, Y.: Network schema preserving heterogeneous information network embedding. In: 29th International Joint Conference on Artificial Intelligence, pp. 1366–1372 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, C., Wang, X., Yu, P.S. (2022). Attribute-Assisted Heterogeneous Graph Representation. In: Heterogeneous Graph Representation Learning and Applications. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, Singapore. https://doi.org/10.1007/978-981-16-6166-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6166-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6165-5

  • Online ISBN: 978-981-16-6166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics