Skip to main content

Abstract

Heterogeneous graph (HG) representation has made great progress in recent years, which clearly shows that it is a powerful and promising graph analysis paradigm. However, it is still a young and promising research field. In this chapter, we first make a summarization of this book and then illustrate some advanced topics, including challenging research issues, and explore a series of possible future research directions. One major potential direction is exploring fundamental ways to keep intrinsic structures or properties in HG. And another direction is to integrate the techniques widely used or newly emerged in machine learning to further enhance the applicability of HG on more key fields. We will illustrate more fine-grained potential works along with these two directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bian, R., Koh, Y.S., Dobbie, G., Divoli, A.: Network embedding and change modeling in dynamic heterogeneous networks. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 861–864. ACM, New York (2019)

    Google Scholar 

  2. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2021)

    Google Scholar 

  3. Bose, A.J., Hamilton, W.L.: Compositional fairness constraints for graph embeddings. In: International Conference on Machine Learning (ICML), pp. 715–724 (2019)

    Google Scholar 

  4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: Going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  5. Cao, Y., Peng, H., Philip, S.Y.: Multi-information source HIN for medical concept embedding. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 396–408 (2020)

    Google Scholar 

  6. Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). ACM, New York (2019)

    Google Scholar 

  7. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 4869–4880 (2019)

    Google Scholar 

  8. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 135–144 (2017)

    Google Scholar 

  9. Du, M., Yang, F., Zou, N., Hu, X.: Fairness in deep learning: A computational perspective. CoRR abs/1908.08843 (2019)

    Google Scholar 

  10. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of the Web Conference 2020 (WWW), pp. 2331–2341 (2020)

    Google Scholar 

  11. Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A survey on knowledge graph-based recommender systems. CoRR abs/2003.00911 (2020)

    Google Scholar 

  12. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint:1903.12261 (2019)

    Google Scholar 

  13. Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., Qi, Y.: Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 33(1), pp. 946–953 (2019)

    Google Scholar 

  14. Hu, Z., Dong, Y., Wang, K., Chang, K., Sun, Y.: GPT-GNN: generative pre-training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1857–1867 (2020)

    Google Scholar 

  15. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure: computing relevance in large heterogeneous information networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1595–1604 (2016)

    Google Scholar 

  16. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition and applications. CoRR abs/2002.00388 (2020)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Variational graph auto-encoders. CoRR abs/1611.07308 (2016)

    Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the Conference ICLR (2017)

    Google Scholar 

  19. Li, Q., Han, Z., Wu, X.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), pp. 3538–3545 (2018)

    Google Scholar 

  20. Liao, R., Urtasun, R., Zemel, R.S.: Generalization and representational limits of graph neural networks. In: International Conference on Machine Learning (ICML), pp. 3419–3430 (2020)

    Google Scholar 

  21. Liao, R., Urtasun, R., Zemel, R.S.: A PAC-Bayesian approach to generalization bounds for graph neural networks. In: Proceedings of the Conference ICLR (2021)

    Google Scholar 

  22. Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. In: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), pp. 8228–8239 (2019)

    Google Scholar 

  23. Liu, X., Zhang, F., Hou, Z., Wang, Z., Mian, L., Zhang, J., Tang, J.: Self-supervised learning: Generative or contrastive. CoRR abs/2006.08218 (2020)

    Google Scholar 

  24. Ma, J., Zhou, C., Cui, P., Yang, H., Zhu, W.: Learning disentangled representations for recommendation. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 5712–5723 (2019)

    Google Scholar 

  25. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: Proceedings of the Conference ICLR (2018)

    Google Scholar 

  26. Narayanaswamy, S., Paige, B., van de Meent, J., Desmaison, A., Goodman, n.d., Kohli, P., Wood, F.D., Torr, P.H.S.: Learning disentangled representations with semi-supervised deep generative models. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), pp. 5925–5935 (2017)

    Google Scholar 

  27. Peng, Z., Dong, Y., Luo, M., Wu, X., Zheng, Q.: Self-supervised graph representation learning via global context prediction. CoRR abs/2003.01604 (2020)

    Google Scholar 

  28. Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainability methods for graph convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10772–10781 (2019)

    Google Scholar 

  29. Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., Wang, K., Tang, J.: GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1150–1160 (2020)

    Google Scholar 

  30. Rahman, T.A., Surma, B., Backes, M., Zhang, Y.: Fairwalk: towards fair graph embedding. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), pp. 3289–3295 (2019)

    Google Scholar 

  31. Schölkopf, B., Locatello, F., Bauer, S., Ke, N.R., Kalchbrenner, N., Goyal, A., Bengio, Y.: Towards causal representation learning. In: Special Issue of Proceedings of the IEEE—Advances in Machine Learning and Deep Neural Networks (2021)

    Google Scholar 

  32. Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)

    Article  Google Scholar 

  33. Sun, K., Lin, Z., Zhu, Z.: Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 5892–5899 (2020)

    Google Scholar 

  34. Tsuyuzaki, K., Nikaido, I.: Biological systems as heterogeneous information networks: a mini-review and perspectives. CoRR abs/1712.08865 (2017)

    Google Scholar 

  35. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: Proceedings of the Conference ICLR (2018)

    Google Scholar 

  36. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: Proceedings of the Conference ICLR (2019)

    Google Scholar 

  37. Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference (WWW), pp. 3307–3313 (2019)

    Google Scholar 

  38. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention network. In: The World Wide Web Conference (WWW), pp. 2022–2032 (2019)

    Google Scholar 

  39. Wang, X., Zhang, Y., Shi, C.: Hyperbolic heterogeneous information network embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 5337–5344 (2019)

    Google Scholar 

  40. Wang, X., Lu, Y., Shi, C., Wang, R., Cui, P., Mou, S.: Dynamic heterogeneous information network embedding with meta-path based proximity. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  41. You, Y., Chen, T., Wang, Z., Shen, Y.: When does self-supervision help graph convolutional networks? CoRR abs/2006.09136 (2020)

    Google Scholar 

  42. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Metagraph2vec: complex semantic path augmented heterogeneous network embedding. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 196–208. Springer, Berlin (2018)

    Google Scholar 

  43. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 793–803 (2019)

    Google Scholar 

  44. Zhao, H., Zhou, Y., Song, Y., Lee, D.L.: Motif enhanced recommendation over heterogeneous information network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM), pp. 2189–2192 (2019)

    Google Scholar 

  45. Zhao, J., Zhou, Z., Guan, Z., Zhao, W., Ning, W., Qiu, G., He, X.: IntentGC: a scalable graph convolution framework fusing heterogeneous information for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 2347–2357 (2019)

    Google Scholar 

  46. Zhao, J., Wang, X., Shi, C., Liu, Z., Ye, Y.: Network schema preserving heterogeneous information network embedding. In: IJCAI (2020)

    Google Scholar 

  47. Zhu, D., Cui, P., Wang, D., Zhu, W.: Deep variational network embedding in Wasserstein space. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 2827–2836 (2018)

    Google Scholar 

  48. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Generalizing graph neural networks beyond homophily. In: Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, C., Wang, X., Yu, P.S. (2022). Future Research Directions. In: Heterogeneous Graph Representation Learning and Applications. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, Singapore. https://doi.org/10.1007/978-981-16-6166-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6166-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6165-5

  • Online ISBN: 978-981-16-6166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics