Skip to main content

An Overview of Biomedical, Biotechnological, and Industrial Applications of Actinomycetes

  • Chapter
  • First Online:
Book cover Natural Products from Actinomycetes

Abstract

Actinobacteria are the largest taxonomic group within the domain bacteria and one of the largest phyla. They are cosmopolitan organisms with the capability of living in an array of environmental and ecological conditions ranging from tranquil forest soils to ecological extremities of volcanoes and marine hydrothermal vents. With this nature of being omnipresent, they play several vital roles in the ecosystem such as recycling of substances, synthesis of bioactive molecules, and degradation of complex polymers. They are considered to be the treasure house of secondary metabolites as they are the main source of preponderant amount of naturally derived, modern-day antibiotics, and many other antifungal, antiparasitic, anticancer, antitumor, and immunomodulator compounds. Furthermore, they are being espoused in different biotechnologies to produce numerous industrially vital enzymes, organic acids, amino acids, pigments, vitamins, and toxins. Consequently, attributed to the massive diversity and the survival ability under harsh exogenous insults, Actinobacteria have also being adopted in ecosystem reclamation, biotransformation, and bioremediation schemes. This chapter is written with the core objective of discussing the involvements of diverse actinomycetes species in the fields of biotechnology, biomedicine, agriculture, environment, and other industries as underpinned by the researches of the international pioneers of the respective fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aftabuddin S, Kashem MA, Kader MA, Sikder MNA, Hakim MA (2013) Use of Streptomyces fradiae and Bacillus megaterium as probiotics in the experimental culture of tiger shrimp Penaeus monodon (Crustacea, Penaeidae). Aquac Aquar Conserv Legis 6(3):253–267

    Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  PubMed  Google Scholar 

  • Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  PubMed  Google Scholar 

  • Amoroso MJ, Benimeli CS, Cuozzo SA (eds) (2013) Actinobacteria: application in bioremediation and production of industrial enzymes. CRC Press

    Google Scholar 

  • Arasu MV, Al-Dhabi NA, Saritha V, Duraipandiyan V, Muthukumar C, Kim S-J (2013) Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp. AP-123 against Helicoverpa armigera and Spodoptera litura. BMC Microbiol 13(1):1–6

    Article  CAS  Google Scholar 

  • Bae M, Chung B, Oh K-B, Shin J, Oh D-C (2015) Hormaomycins B and C: new antibiotic cyclic depsipeptides from a marine mudflat-derived Streptomyces sp. Mar Drugs 13(8):5187–5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berezin V, Abdukhakimova D, Trenozhnikova L, Bogoyavlenskiy A, Turmagambetova A, Issanov A, Azizan A (2019) Antiviral activities of extremophilic actinomycetes extracts from Kazakhstan’s unique ecosystems against influenza viruses and paramyxoviruses. Virol J 16(1):1–16

    Article  CAS  Google Scholar 

  • Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1(2):105–116

    Article  Google Scholar 

  • Bürstner N, Roggo S, Ostermann N, Blank J, Delmas C, Freuler F, Gerhartz B et al (2015) Gift from nature: cyclomarin A kills mycobacteria and malaria parasites by distinct modes of action. ChemBioChem 16(17):2433–2436

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Khopade A, Biao R, Jian W, Liu X-Y, Mahadik K, Chopade B, Zhang L, Kokare C (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9. J Mol Catal B Enzym 68(1):52–58

    Article  CAS  Google Scholar 

  • Charan RD, Schlingmann G, Janso J, Bernan V, Feng X, Carter GT (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67(8):1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi S, Khurana SMP (2019) Importance of actinobacteria for bioremediation. In: Plant biotechnology: progress in genomic era. Springer, Singapore, pp 277–307

    Chapter  Google Scholar 

  • Chen Y, Liu R-H, Li T-X, Huang S-S, Kong L-Y, Yang M-H (2017) Enduspeptides A-F, six new cyclic depsipeptides from a coal mine derived Streptomyces sp. Tetrahedron 73:527–531

    Article  CAS  Google Scholar 

  • Chen M-H, Chang S-S, Dong B, Yu L-Y, Wu Y-X, Wang R-Z, Jiang W, Gao Z-P, Si S-Y (2018) Ahmpatinin i Bu, a new HIV-1 protease inhibitor, from Streptomyces sp. CPCC 202950. RSC Adv 8(10):5138–5144

    Article  CAS  Google Scholar 

  • Cheng C, MacIntyre L, Abdelmohsen UR, Horn H, Polymenakou PN, Edrada-Ebel RA, Hentschel U (2015) Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS One 10(9):e0138528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopherson MR, Suen G, Bramhacharya S, Jewell KA, Aylward FO, Mead D, Brumm PJ (2013) The genome sequences of Cellulomonas fimi and “Cellvibrio gilvus” reveal the cellulolytic strategies of two facultative anaerobes, transfer of “Cellvibrio gilvus” to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov. PLoS One 8(1):e53954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford Khan NI, Filonow AB, Singleton LL (1997) Augmentation of soil with sporangia of Actinoplanes spp. for biological control of Pythium damping-off. Biocontrol Sci Technol 7(1):11–22

    Article  Google Scholar 

  • De Azeredo LAI, Freire DMG, Soares RMA, Leite SGF, Coelho RRR (2004) Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzyme Microb Technol 34(3–4):354–358

    Article  CAS  Google Scholar 

  • Deepika L, Kannabiran K (2010) Isolation and characterization of antagonistic actinomycetes from marine soil. J Microb Biochem Technol 2:001–006

    Article  CAS  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25(10):472–479

    Article  CAS  PubMed  Google Scholar 

  • Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y (2010) Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 8(4):1153–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esawy MA (2007) Isolation and partial characterization of extracellular keratinase from a novel mesophilic Streptomyces albus AZA. Res J Agric Biol Sci 3(6):808–817

    CAS  Google Scholar 

  • Fabre B, Armau E, Etienne G, Legendre F, Tiraby G (1988) A simple screening method for insecticidal substances from actinomycetes. J Antibiot 41(2):212–219

    Article  CAS  Google Scholar 

  • Falentin H, Deutsch SM, Parayre-Breton S, Dherbecourt J, Jan G, Thierry A, Maillard MB et al (2010) The complete genome of Propionibacterium freudenreichii CIRM 1 a hardy actinobacteria with food and probiotic applications. In: 3rd International Symposium on Propionibacteria and Bifidobacteria: Dairy and Probiotic, vol 149, p np

    Google Scholar 

  • Fernandes TAR, da Silveira WB, Passos FML, Zucchi TD (2014) Laccases from Actinobacteria—what we have and what to expect. Adv Microbiol 2014

    Google Scholar 

  • Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B (2005) Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 105(2):739–758

    Article  CAS  PubMed  Google Scholar 

  • Gasmi M, Kitouni M, Carro L, Pujic P, Normand P, Boubakri H (2019) Chitinolytic actinobacteria isolated from an Algerian semi-arid soil: development of an antifungal chitinase-dependent assay and GH18 chitinase gene identification. Ann Microbiol 69(4):395–405

    Article  CAS  Google Scholar 

  • Gohain A, Manpoong C, Saikia R, De Mandal S (2020) Actinobacteria: diversity and biotechnological applications. In: Recent advancements in microbial diversity, pp 217–231

    Chapter  Google Scholar 

  • Grasso LL, Martino DC, Alduina R (2016) Production of antibacterial compounds from Actinomycetes. In: Actinobacteria-basics and biotechnological applications, pp 177–198

    Google Scholar 

  • Hamedi J, Dehhaghi M, Mohammdipanah F (2015a) Isolation of extremely heavy metal resistant strains of rare Actinomycetes from high metal content soils in Iran. Int J Environ Res 9(2)

    Google Scholar 

  • Hamedi J, Moghimi H, Papiran R, Mohammadipanah F (2015b) Screening of phytotoxic activity and nlp genes from rhizosphere actinomycetes. Ann Microbiol 65(1):527–532

    Article  CAS  Google Scholar 

  • Hardter U, Luzhetska M, Ebeling S, Bechthold A (2012) Ethanol production in Actinomycetes after expression of synthetic adhB and pdc. Open Biotechnol J 6(1):13–16

    Article  CAS  Google Scholar 

  • Hassan HM, Degen D, Jang KH, Ebright RH, Fenical W (2015) Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J Antibiot 68(3):206–209

    Article  CAS  Google Scholar 

  • Hassan HM, Boonlarppradab C, Fenical W (2016) Actinoquinolines A and B, anti-inflammatory quinoline alkaloids from a marine-derived Streptomyces sp., strain CNP975. J Antibiot 69(7):511–514

    Article  CAS  Google Scholar 

  • Hayat S, Ashraf A, Aslam B, Asif R, Muzammil S, Zahoor MA, Waseem M et al (2020) Actinobacteria: potential candidate as plant growth promoters. In: Plant stress physiology. IntechOpen

    Google Scholar 

  • Heisey RM, Huang J, Mishra SK, Keller JE, Miller JR, Putnam AR, D’Silva TDJ (1988) Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J Agric Food Chem 36(6):1283–1286

    Article  CAS  Google Scholar 

  • Huang X-H, Nishida H, Tomoda H, Tabata N, Shiomi K, Yang D-J, Takayanagi H, Omura S (1995) Terpendoles, novel AC AT inhibitors produced by Albophoma yamanashiensis. J Antibiot 48(1):5–11

    Article  CAS  Google Scholar 

  • Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K, Miyanouchi K (2012) Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot 65(7):355–359

    Article  CAS  Google Scholar 

  • Iwatsuki M, Uchida R, Yoshijima H, Ui H, Shiomi K, Matsumoto A, Takahashi Y, Abe A, Tomoda H, Ōmura S (2008) Guadinomines, type III secretion system inhibitors, produced by Streptomyces sp. K01-0509. J Antibiot 61(4):222–229

    Article  CAS  Google Scholar 

  • Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J (2018) Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol 67(3):259

    Article  PubMed  PubMed Central  Google Scholar 

  • Janardhan A, Kumar AP, Viswanath B, Gopal DVRS, Narasimha G (2018) Antiviral and larvicidal properties of novel bioactive compounds produced from marine actinomycetes. Russ J Mar Biol 44(5):424–428

    Article  Google Scholar 

  • Jenifer JSCA, Donio MBS, Michaelbabu M, Vincent SGP, Citarasu T (2015) Haloalkaliphilic Streptomyces spp. AJ8 isolated from solar salt works and its’ pharmacological potential. AMB Express 5(1):1–12

    Article  CAS  Google Scholar 

  • Kane SP, Hanes SD (2017) Unexplained increases in serum vancomycin concentration in a morbidly obese patient. Intens Crit Care Nurs 39:55–58

    Article  Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41–53

    Article  CAS  Google Scholar 

  • Kawase T, Saito A, Sato T, Kanai R, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2004) Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Appl Environ Microbiol 70(2):1135–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Shin Y, Lee SH, Oh WK, Oh KB, Lee SK, Shin J, Oh DC (2015) The secondary metabolites from halophilic actinomycetes from a solar saltern in Korea. Planta Med 81(11):PQ17

    Google Scholar 

  • Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot 40(9):1249–1255

    Article  CAS  Google Scholar 

  • Koizumi S, Yonetani Y, Maruyama A, Teshiba S (2000) Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 53(6):674–679

    Article  CAS  PubMed  Google Scholar 

  • Kondratyuk TP, Park E-J, Yu R, Van Breemen RB, Asolkar RN, Murphy BT, Fenical W, Pezzuto JM (2012) Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 10(2):451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz HATİCE, Unaldi MN, Aslan B, Coral G, Arikan BURHAN, Dincer SADIK, Colak O (2003) Keratinolytic activity of Streptomyces strain BA7, a new isolate from Turkey. Ann Microbiol 53:85–93

    CAS  Google Scholar 

  • Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S, Yoshida M (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242(2):540–547

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Y, Goodfellow M (2008) Five new members of the Streptomyces violaceusniger 16S rRNA gene clade: streptomyces castelarensis sp. nov., comb. nov., Streptomyces himastatinicus sp. nov., Streptomyces mordarskii sp. nov., Streptomyces rapamycinicus sp. nov. and Streptomyces ruanii sp. nov. Int J Syst Evol Microbiol 58(6):1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15(2):125–150

    Article  CAS  Google Scholar 

  • Lacombe-Harvey M-È, Brzezinski R, Beaulieu C (2018) Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl Microbiol Biotechnol 102(17):7219–7230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalloo R, Moonsamy G, Ramchuran S, Görgens J, Gardiner N (2010) Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent. Lett Appl Microbiol 50(6):563–570

    Article  CAS  PubMed  Google Scholar 

  • Lamilla C, Pavez M, Santos A, Hermosilla A, Llanquinao V, Barrientos L (2017) Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biol 40(3):719–726

    Article  Google Scholar 

  • Lawson PA (2018) The phylum Actinobacteria. In: The bifidobacteria and related organisms. Academic, pp 1–8

    Google Scholar 

  • Lee J-G, Yoo I-D, Kim W-G (2007) Differential antiviral activity of benzastatin C and its dechlorinated derivative from Streptomyces nitrosporeus. Biol Pharm Bull 30(4):795–797

    Article  CAS  PubMed  Google Scholar 

  • Lee M-J, Kong D, Han K, Sherman DH, Bai L, Deng Z, Lin S, Kim E-S (2012) Structural analysis and biosynthetic engineering of a solubility-improved and less-hemolytic nystatin-like polyene in Pseudonocardia autotrophica. Appl Microbiol Biotechnol 95(1):157–168

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Shin HJ, Kim D-Y, Shim D-W, Kim T-J, Ye S-K, Won H-S, Koppula S, Kang T-B, Lee K-H (2013) Streptochlorin suppresses allergic dermatitis and mast cell activation via regulation of Lyn/Fyn and Syk signaling pathways in cellular and mouse models. PLoS One 8(9):e74194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D-S, Yoon C-S, Jung Y-T, Yoon J-H, Kim Y-C, Hyuncheol O (2016) Marine-derived secondary metabolite, Griseusrazin A, suppresses inflammation through heme oxygenase-1 induction in activated RAW264. 7 macrophages. J Nat Prod 79(4):1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Gan M, Dong B, Zhang T, Li Y, Zhang Y, Fan X et al (2013) 4862F, a new inhibitor of HIV-1 protease, from the culture of Streptomyces I03A-04862. Molecules 18(1):236–243

    Article  CAS  Google Scholar 

  • Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140(5):1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Maskey RP, Helmke E, Kayser O, Fiebig HH, Maier A, Busche A, Laatsch H (2004) Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J Antibiot 57(12):771–779

    Article  CAS  Google Scholar 

  • Matsumoto Y, Mineta S, Murayama K, Sugimori D (2013) A novel phospholipase B from Streptomyces sp. NA 684–purification, characterization, gene cloning, extracellular production and prediction of the catalytic residues. FEBS J 280(16):3780–3796

    Article  CAS  PubMed  Google Scholar 

  • McCarthy AJ, Peace E, Broda P (1985) Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl Microbiol Biotechnol 21(3):238–244

    Article  CAS  Google Scholar 

  • McMahon MD, Guan C, Handelsman J, Thomas MG (2012) Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl Environ Microbiol 78(10):3622–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mat 122(1–2):161–170

    Article  CAS  Google Scholar 

  • Minotto E, Milagre LP, Oliveira MT, Van Der Sand ST (2014) Enzyme characterization of endophytic actinobacteria isolated from tomato plants. J Adv Sci Res 5(2)

    Google Scholar 

  • Mitra P, Chakrabartty PK (2005) An extracellular protease with depilation activity from Streptomyces nogalator. J Sci Ind Res 64:978–983

    CAS  Google Scholar 

  • Moreira KA, Cavalcanti MTH, Duarte HS, Tambourgi EB, de Melo EHM, Silva VL, Porto ALF, de Lima Filho JL (2001) Caracterização parcial de proteases extracelulares de Streptomyces clavuligerus usando um meio de cultura econômico. Braz J Microbiol 32(3):215–220

    Article  CAS  Google Scholar 

  • Morosoli R, Bertrand J-L, Mondou F, Shareck F, Kluepfel D (1986) Purification and properties of a xylanase from Streptomyces lividans. Biochem J 239(3):587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nafis A, Raklami A, Bechtaoui N, El Khalloufi F, El Alaoui A, Glick BR, Hafidi M, Kouisni L, Ouhdouch Y, Hassani L (2019) Actinobacteria from extreme niches in morocco and their plant growth-promoting potentials. Diversity 11(8):139

    Article  CAS  Google Scholar 

  • Niladevi KN, Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresour Technol 99(11):4583–4589

    Article  CAS  PubMed  Google Scholar 

  • Oh D-C, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod 71(4):570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onwurah INE, Nwuke C (2004) Enhanced bioremediation of crude oil-contaminated soil by a Pseudomonas species and mutually associated adapted Azotobacter vinelandii. J Chem Technol Biotechnol 79(5):491–498

    Article  CAS  Google Scholar 

  • Padilla MA, Rodrigues RAF, Bastos JCS, Martini MC, de Souza Barnabé AC, Kohn LK, Uetanabaro APT et al (2015) Actinobacteria from termite mounds show antiviral activity against bovine viral diarrhea virus, a surrogate model for hepatitis C virus. Evid Based Complement Alternat Med 2015:745754

    Article  PubMed  PubMed Central  Google Scholar 

  • Palaniyandi SA, Yang SH, Suh J-W (2014) Cellulase production and saccharification of rice straw by the mutant strain Hypocrea koningii RSC1. J Basic Microbiol 54(1):56–65

    Article  CAS  PubMed  Google Scholar 

  • Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P, Le Roch K (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3(6):e2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulgar G, Maria E, Saadeddin A (2014) The cellulolytic system of Thermobifida fusca. Crit Rev Microbiol 40(3):236–247

    Article  CAS  Google Scholar 

  • Puttaswamygowda GH, Olakkaran S, Antony A, Purayil AK (2019) Present status and future perspectives of marine actinobacterial metabolites. In: Recent developments in applied microbiology and biochemistry. Academic, pp 307–319

    Chapter  Google Scholar 

  • Raja A, Prabakarana P (2011) Actinomycetes and drug-an overview. Am J Drug Discov Dev 1(2):75–84

    Article  Google Scholar 

  • Raskin I, Kumar NPBA, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Ratnakomala S, Perwitasari U (2020) The amylase production by Actinobacteria isolated from rumen fluid. In: IOP Conference Series: Earth and Environmental Science, vol 439, no 1, p 012019. IOP Publishing

    Google Scholar 

  • Sacramento DR, Coelho RRR, Wigg MD, de Toledo Luna Linhares LF, dos Santos MGM, de Azevedo Soares Semêdo LT, da Silva AJR (2004) Antimicrobial and antiviral activities of an actinomycete (Streptomyces sp.) isolated from a Brazilian tropical forest soil. World J Microbiol Biotechnol 20(3):225–229

    Article  Google Scholar 

  • Salwan R, Sharma V (2018) The role of actinobacteria in the production of industrial enzymes. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 165–177

    Chapter  Google Scholar 

  • Sanglier JJ, Haag H, Huck TA, Fehr T (1993) Novel bioactive compounds from actinomycetes: a short review (1988–1992). Res Microbiol 144(8):633–642

    Article  CAS  PubMed  Google Scholar 

  • Santos JD, Vitorino I, Reyes F, Vicente F, Lage OM (2020) From ocean to medicine: pharmaceutical applications of metabolites from marine bacteria. Antibiotics 9(8):455

    Article  CAS  PubMed Central  Google Scholar 

  • Saraf M, Hastings A (2010) Biofuels, the role of biotechnology to improve their sustainability and profitability. In: Biodiversity, biofuels, agroforestry and conservation agriculture, pp 123–148

    Google Scholar 

  • Sathya A, Vijayabharathi R, Srinivas V, Gopalakrishnan S (2016) Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6(2):1–6

    Article  Google Scholar 

  • Sato S, Iwata F, Yamada S, Katayama M (2012) Neomaclafungins A–I: oligomycin-class macrolides from a marine-derived actinomycete. J Nat Prod 75(11):1974–1982

    Article  CAS  PubMed  Google Scholar 

  • Saxena S (2015) Agricultural applications of microbes. In: Applied microbiology. Springer, New Delhi, pp 37–54

    Google Scholar 

  • Sekizawa Y, Takematsu T (2013) How to discover new antibiotics for herbicidal use. In: Natural Products: Proceedings of the 5th International Congress of Pesticide Chemistry, Kyoto, Japan, 29 August–4 September 1982, p 261. Elsevier

    Google Scholar 

  • Shata HMAH, Farid MAF (2012) Optimization of extraction parameters for keratinase recovery from fermented feather under solid state fermentation by Streptomyces sp. NRC 13S. J Appl Biol Chem 55(3):149–156

    Article  CAS  Google Scholar 

  • Shimizu M (2011) Endophytic actinomycetes: biocontrol agents and growth promoters. In: Bacteria in agrobiology: plant growth responses. Springer, Berlin, Heidelberg, pp 201–220

    Chapter  Google Scholar 

  • Shivlata L, Satyanarayana T (2017) Actinobacteria in agricultural and environmental sustainability. In: Agro-environmental sustainability. Springer, Cham, pp 173–218

    Chapter  Google Scholar 

  • Solecka J, Zajko J, Postek M, Rajnisz A (2012) Biologically active secondary metabolites from Actinomycetes. Open Life Sci 7(3):373–390

    Article  CAS  Google Scholar 

  • Stackebrandt E, Schumann PETER (2006) Introduction to the taxonomy of actinobacteria. Prokaryotes 3:297–321

    Article  Google Scholar 

  • Sugita H, Matsuo N, Hirose Y, Iwato M, Deguchi Y (1997) Vibrio sp. strain NM 10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida. Appl Environ Microbiol 63(12):4986–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suthindhiran K, Jayasri MA, Dipali D, Prasar A (2014) Screening and characterization of protease producing actinomycetes from marine saltern. J Basic Microbiol 54(10):1098–1109

    Article  CAS  PubMed  Google Scholar 

  • Syed DG, Lee JC, Li W-J, Kim C-J, Agasar D (2009) Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour Technol 100(5):1868–1871

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Nakashima T (2018) Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics 7(2):45

    Article  CAS  PubMed Central  Google Scholar 

  • Takasuka TE, Book AJ, Lewin GR, Currie CR, Fox BG (2013) Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci Rep 3(1):1–10

    Article  CAS  Google Scholar 

  • Takemori D, Yoshino K, Eba C, Nakano H, Iwasaki Y (2012) Extracellular production of phospholipase A2 from Streptomyces violaceoruber by recombinant Escherichia coli. Protein Expr Purif 81(2):145–150

    Article  CAS  PubMed  Google Scholar 

  • Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem 38(9):1327–1340

    Article  CAS  Google Scholar 

  • ul Hassan SS, Shaikh AL (2017) Marine actinobacteria as a drug treasure house. Biomed Pharmacother 87:46–57

    Article  CAS  Google Scholar 

  • Wink J, Kroppenstedt RM, Seibert G, Stackebrandt E (2003) Actinomadura namibiensis sp. nov. International journal of systematic and evolutionary microbiology 53(3):721–724

    Article  CAS  PubMed  Google Scholar 

  • Wink J, Mohammadipanah F, Hamedi J (eds) (2017) Biology and biotechnology of actinobacteria. Springer International Publishing, Berlin

    Google Scholar 

  • Yang J, Yang Z, Yin Y, Rao M, Liang Y, Ge M (2016) Three novel polyene macrolides isolated from cultures of Streptomyces lavenduligriseus. J Antibiot (Tokyo) 69:62–65

    Article  CAS  Google Scholar 

  • Yao J, Tian L, Wang Y, Djah A, Wang F, Chen H, Su C et al (2008) Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicol Environ Saf 69(2):289–295

    Article  CAS  PubMed  Google Scholar 

  • Yassin AF (2014) The family Actinomycetaceae. In: The prokaryotes: actinobacteria, vol 4, pp 41–79

    Google Scholar 

  • Yassir RY, Adel ME, Azze A (2002) Use of probiotic bacteria as growth promoters, antibacterial and the effect on physiological parameters of Oreochromis niloticus. J Fish Dis 22:633–642

    Google Scholar 

  • Zhou Q, Li K, Jun X, Bo L (2009) Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour Technol 100(16):3780–3786

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruwandeepika, H.A.D., Fernando, G.C.P., Jayaweera, T.S.P. (2022). An Overview of Biomedical, Biotechnological, and Industrial Applications of Actinomycetes. In: Rai, R.V., Bai, J.A. (eds) Natural Products from Actinomycetes. Springer, Singapore. https://doi.org/10.1007/978-981-16-6132-7_18

Download citation

Publish with us

Policies and ethics