Skip to main content

Prevention of Failures in the Footwear Production Process by Applying Machine Learning

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 262)

Abstract

At present, the handcrafted footwear sector is affected by the high competitiveness due to the increasing automation of companies. In this sense, in order to improve its competitiveness, a system was proposed to predict the failures of a production system and to carry out preventive maintenance actions. Samples were taken from 25 productions and 7 activities were established: cutting, stitching, pre fabrication, final preparation, gluing, assembly and finishing. The company produces batches of 90 pairs per day, with a standard time of 274.53 min and a promised productivity of 1.8. A support vector machine model was developed to predict the possible failures of the process taking as a reference the standard time of each stage. Finally, the results allow predicting the faults to optimise the production process by applying Support Vector Machine (SVM).

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Calderón-Andrade, R., Hernández-Gress, E.S., Montufar Benítez, M.A.: Productivity improvement through reengineering and simulation: a case study in a footwear-industry. Appl. Sci. 10(16), 5590 (2020). https://doi.org/10.3390/app10165590

    Article  Google Scholar 

  2. Pla-Barber, J., Villar, C., Benito-Sarriá, G.: Configurational theory in traditional manufacturing industries: a new model of high-performing small and medium-sized enterprises. Sustainability 12(17), 6818 (2020). https://doi.org/10.3390/su12176818

    Article  Google Scholar 

  3. Adulyanukosol, A., Silpcharu, T.: Footwear design strategies for the Thai footwear industry to be excellent in the world market. J. Open Innov. Technol. Mark. Complex. 6(1), 5 (2020). https://doi.org/10.3390/joitmc6010005

    Article  Google Scholar 

  4. Varela, S.C., Santamaría, J.L., Pilamunga, M.: Cultural identity in the productive matrix: a challenge for Ecuadorian footwear. In: Margalina, V.-M., Lavín, J.M. (eds.) Management and Inter/Intra Organizational Relationships in the Textile and Apparel Industry, pp. 200–218. IGI Global, Hershey (2020)

    Chapter  Google Scholar 

  5. Nallusamy, S., Saravanan, V.: Enhancement of overall output in a small scale industry through VSM, line balancing and work standardization. Int. J. Eng. Res. Africa 26, 176–183 (2016). https://doi.org/10.4028/www.scientific.net/JERA.26.176

  6. Saravanan, V., Nallusamy, S., George, A.: Efficiency enhancement in a medium scale gearbox manufacturing company through different lean tools - a case study. Int. J. Eng. Res. Africa 34, 128–138 (2018). https://doi.org/10.4028/www.scientific.net/JERA.34.128

  7. Suganthini Rekha, R., Periyasamy, P., Nallusamy, S.: An optimized model for reduction of cycle time using value stream mapping in a small scale industry. Int. J. Eng. Res. 27, 179–189 (2016). https://doi.org/10.4028/www.scientific.net/JERA.27.179

  8. Turner, C., et al.: Sustainable production in a circular economy: a business model for re-distributed manufacturing. Sustainability 11(16), 4291 (2019). https://doi.org/10.3390/su11164291

    Article  Google Scholar 

  9. Subic, A., Shabani, B., Hedayati, M., Crossin, E.: Capability framework for sustainable manufacturing of sports apparel and footwear. Sustainability 4(9), 2127–2145 (2012). https://doi.org/10.3390/su4092127

    Article  Google Scholar 

  10. Rahul, S.M., Arvind, B., Sarbjit, S., Anish, S.: Productivity gains through standardization-of-work in a manufacturing company. J. Manuf. Technol. Manag. 30(6), 899–919 (2019). https://doi.org/10.1108/JMTM-07-2017-0151

    Article  Google Scholar 

  11. Zrelli, H., Alsharif, A.H., Tlili, I.: Malmquist indexes of productivity change in Tunisian manufacturing industries. Sustainability 12(4), 1367 (2020). https://doi.org/10.3390/su12041367

    Article  Google Scholar 

  12. Reyes, J., Aldas, D., Alvarez, K., García, M., Ruíz, M.: The factory physics for the scheduling: application to footwear industry (2017)

    Google Scholar 

  13. Arredondo-Soto, K.C., Realyvasquez-Vargas, A., Maldonado-Macías, A.A., García-Alcaraz, J.: Impact of human resources on remanufacturing process, internal complexity, perceived quality of core, numerosity, and key process indicators. Robot. Comput. Integr. Manuf. 59, 168–176 (2019). https://doi.org/10.1016/j.rcim.2019.04.004

    Article  Google Scholar 

  14. Realyvásquez-Vargas, A., Arredondo-Soto, K.C., Blanco-Fernandez, J., Sandoval-Quintanilla, J.D., Jiménez-Macías, E., García-Alcaraz, J.L.: Work standardization and anthropometric workstation design as an integrated approach to sustainable workplaces in the manufacturing industry. Sustainability 12(9), 3728 (2020). https://doi.org/10.3390/su12093728

    Article  Google Scholar 

  15. Reyes, J., Alvarez, K., Vasquez, R.: Dynamic buffer management for raw material supply in the footwear industry. J. Ind. Intell. Inf. 4(1) (2015). https://doi.org/10.12720/jiii.4.1.1-8

  16. Ortiz, V.K., Caicedo, Á.J.: Procedimiento para la programación y control de la producción de una pequeña empresa de calzado. Sci Tech 19, 377–384 (2014)

    Google Scholar 

  17. Alzate, B.A., Hurtado, J.B., Lopez, L.F.M.: Implementación de herramientas para el diagnóstico de innovación en una empresa del sector calzado en Colombia. RAI Rev Adm e Inovação 12(3), 310–329 (2015). https://doi.org/10.11606/rai.v12i3.100946

  18. Bonilla, Y.M.B., Sánchez, J.Z.M.: Medicion de la productividad y competitividad sector de la industria del calzado en la ciudad de Bogota DC. ANFECA, Mexico DF, Mexico (2013)

    Google Scholar 

  19. Vargas Téllez, J.A.: Organización del trabajo y satisfacción laboral: un estudio de caso en la industria del calzado. Nov. Sci. 4(7), 172–204 (2012)

    Google Scholar 

  20. Ghafoorpoor Yazdi, P., Azizi, A., Hashemipour, M.: A hybrid methodology for validation of optimization solutions effects on manufacturing sustainability with time study and simulation approach for SMEs. Sustainability 11(5), 1454 (2019). https://doi.org/10.3390/su11051454

    Article  Google Scholar 

  21. Tomiyama, T., Moyen, F.: Resilient architecture for cyber-physical production systems. CIRP Ann. 67(1), 161–164 (2018). https://doi.org/10.1016/j.cirp.2018.04.021

    Article  Google Scholar 

  22. Puchkova, A., McFarlane, D., Srinivasan, R., Thorne, A.: Resilient planning strategies to support disruption-tolerant production operations. Int. J. Prod. Econ. 226, 107614 (2020). https://doi.org/10.1016/j.ijpe.2020.107614

    Article  Google Scholar 

  23. Ge, M., Du, R., Zhang, G., Xu, Y.: Fault diagnosis using support vector machine with an application in sheet metal stamping operations. Mech. Syst. Signal Process. 18(1), 143–159 (2004). https://doi.org/10.1016/S0888-3270(03)00071-2

    Article  Google Scholar 

  24. Liang, J., Du, R.: Model-based fault detection and diagnosis of HVAC systems using support vector machine method. Int. J. Refrig. 30(6), 1104–1114 (2007). https://doi.org/10.1016/j.ijrefrig.2006.12.012

    Article  Google Scholar 

  25. Song, W., Xiang, J.: A method using numerical simulation and support vector machine to detect faults in bearings. In: Proceedings of the 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017, vol. 2017, pp. 603–607, December 2017. https://doi.org/10.1109/SDPC.2017.118

  26. Hu, R.L., Leahy, K., Konstantakopoulos, I.C., Auslander, D.M., Spanos, C.J., Agogino, A.M.: Using domain knowledge features for wind turbine diagnostics. In: Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, pp. 300–305, January 2017. https://doi.org/10.1109/ICMLA.2016.172

  27. Shi, X., Zhu, L.: Fault line detection of leakage protection system of mine based on rough sets and support vector machine. In: Proceedings of 2012 3rd International Conference on Digital Manufacturing and Automation, ICDMA 2012, pp. 402–405, (2012). https://doi.org/10.1109/ICDMA.2012.96

  28. Tyagi, S., Panigrahi, S.K.: A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks. J. Appl. Comput. Mech. 3(1), 80–91 (2017). https://doi.org/10.22055/jacm.2017.21576.1108

  29. Huang, J., Di Troia, F., Stamp, M.: Acoustic gait analysis using support vector machines. In: ICISSP 2018-Proceedings of the 4th International Conference on Information Systems Security and Privacy, vol. 2018, pp. 545–552, January 2018. https://doi.org/10.5220/0006730705450552

  30. Vera-Rodriguez, R., Lewis, R.P., Mason, J.S.D., Evans, N.W.D.: A large scale footstep database for biometric studies created using cross-biometrics for labelling. In: 2008 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008, pp. 1361–1366 (2008). https://doi.org/10.1109/ICARCV.2008.4795721

  31. Reyes-Vasquez, J.P., Aldas-Salazar, D.S., Morales-Perrazo, L.A., Garcia-Carrillo, M.G.: EvaluaciÃ\textthreesuperiorn de la capacidad para montaje en la industria manufacturera de calzado. Ing. Ind. 37, 14–23 (2016)

    Google Scholar 

  32. Hitomi, K.: Efficiency analysis of Japan’s industry and manufacturing. Technovation 24(9), 741–748 (2004). https://doi.org/10.1016/S0166-4972(02)00151-7

    Article  Google Scholar 

  33. Reyes, J., Alvarez, K., Martínez, A., Guamán, J.: Total productive maintenance for the sewing process in footwear. J. Ind. Eng. Manag. 11(4), 814–822 (2018). https://doi.org/10.3926/jiem.2644

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ayala-Chauvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tierra-Arévalo, M., Ayala-Chauvin, M., Nacevilla, C., de la Fuente-Morato, A. (2022). Prevention of Failures in the Footwear Production Process by Applying Machine Learning. In: Scholz, S.G., Howlett, R.J., Setchi, R. (eds) Sustainable Design and Manufacturing. KES-SDM 2021. Smart Innovation, Systems and Technologies, vol 262. Springer, Singapore. https://doi.org/10.1007/978-981-16-6128-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6128-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6127-3

  • Online ISBN: 978-981-16-6128-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics