Skip to main content

Do Fasting, CR and FMD Improve the Chemotherapy Response, Reduce Off-Target Toxicities and Enhance Antitumour Immunity? Illusion or Clinical Reality?

  • Chapter
  • First Online:
Dietary Research and Cancer
  • 389 Accesses

Abstract

Besides the great strides of efforts made towards understanding the effect of fasting, calorie restriction (CR) and fasting-mimicking diet (FMD), yet there is growing curiosity among the cancer survivors towards this unresolved question whether fasting/CR/FMD has any role to play in the progression and treatment of cancer. Few notable questions being asked by the cancer patients pertain to efficacy of fasting/CR/FMD in arresting the progression of cancer, killing of cancer cells, boosting of the immune system, and whether it has role in improving the effectiveness of currently prescribed chemotherapy and radiation therapy? The sensitivity of cancer cells towards nutrient depletion and their dependency on alternate metabolites has been emerged as a hallmark of cancer. The current preclinical and clinical research finding has demonstrated that fasting, calorie restriction or fasting-mimicking diets induce variety of alterations in growth factors, levels of metabolites, etc., which ultimately leads into creation of an environments that has potential to reduce the adaptive abilities of cancer cells towards survival and thereby helps in improving the efficacy of cancer chemotherapy. Moreover, fasting/calorie restriction or FMDs have been reported to increase resistance towards chemotherapy drugs in normal cells; however, it is not found in cancer cells and thereby promote regeneration effects in normal cells. These dramatic effects of fasting/FMD may help in preventing the detrimental side effects of chemotherapy drugs. Although fasting cannot be tolerated by patients, however, the current preclinical and clinical studies demonstrated feasibility and safety of periodic fasting or FMDs. Taking into considerations the current literature, it is possible to integrate the periodic fasting or FMDs with chemotherapy, cancer immunotherapy or other cancer treatments, which may increase the therapeutic index of cancer treatments and circumvent the emerging resistance and side effects or off-target toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC1:

Acetyl-coenzyme A carboxylase 1

AFT-3:

AMP-dependent transcription factor

AKT:

Protein kinase B

CD:

Cluster of differentiation

CML:

Chronic myeloid leukaemia

COX-2:

Cyclooxygenase-2

CR:

Calorie restriction

ENT1:

Equilibrative nucleoside transporter 1

ET-1:

Endothelin 1

FMD:

Fasting-mimicking diet

FoxO1:

Forkhead transcription factor O class 1

FoxO3:

Forkhead transcription factor O class 3

H2AX:

H2A histone family member X

HER2:

Human epidermal growth factor receptor 2

HIF-1α:

Hypoxia-induced factor 1α

HORMAD1:

HORMA domain-containing protein 1

ICAM-1:

Intercellular adhesion molecule 1

IGF:

Insulin-like growth factor

KD:

Ketogenic diet

mCRPC:

Metastatic castration-resistant prostate cancer.

NF-κB:

Nuclear factor-kappa light-chain enhancer of activated B cells

NK:

Natural killer cells

NSCLC:

Non-small cell lung cancer

PD-1:

Programmed cell death protein 1

PI3K:

Phosphoinositide 3 kinase

PPAR-γ:

Peroxisome proliferator-activated receptor γ

PTEN:

Phosphatase and tensin homolog

RAS:

Rat sarcoma

SIRT1:

Sirtuin 1

TKI:

Tyrosine kinase inhibitor

TNBC:

Triple-negative breast cancer

ZEB1:

Zinc finger E-box-binding homeobox 1

References

  • Bauersfeld SP, et al. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer. 2018;18(1):476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bianchi G, et al. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget. 2015;6:11806–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandhorst S, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and health span. Cell Metab. 2015;22:86–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brawley OW. Avoidable cancer deaths globally. CA Cancer J Clin. 2011;61(2):67–8.

    Article  PubMed  Google Scholar 

  • Cantó C, Auwerx J. Calorie restriction: is AMPK a key sensor and effector? Physiology. 2011;26:214–24.

    Article  PubMed  CAS  Google Scholar 

  • Clinthorne JF, Beli E, Duriancik DM, et al. NK cell maturation and function in C57BL/6 mice are altered by caloric restriction. J Immunol. 2013;190(2):712–22.

    Article  CAS  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–2.

    Article  CAS  PubMed  Google Scholar 

  • de Groot S, et al. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer. 2015;15:652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Groot S, et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun. 2020;11(1):3083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Biase S, Lee C, Brandhorst S, et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell. 2016;30(1):136–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorff TB, et al. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer. 2016;16:360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emmons KM, Colditz GA. Realizing the potential of cancer prevention—the role of implementation science. N Engl J Med. 2017;376:986–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farazi M, Nguyen J, Goldufsky J, et al. Caloric restriction maintains OX40 agonist-mediated tumor immunity and CD4 T cell priming during aging. Cancer Immunol Immunother. 2014;63:615–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes G, Yunis EJ, Good RA. Suppression of adenocarcinoma by the immunological consequences of calorie restriction. Nature. 1976;263:504–7.

    Article  CAS  PubMed  Google Scholar 

  • Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013;27:2072–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. J Immunol. 2017;198(3):981–5.

    CAS  PubMed  Google Scholar 

  • Ibrahim EM, Al-Foheidi MH, Al-Mansour MM. Energy and caloric restriction, and fasting and cancer: a narrative review. Support Care Cancer. 2021;29:2299–304.

    Article  PubMed  Google Scholar 

  • Iwashige K, Kouda K, Kouda M, et al. Calorie restricted diet and urinary pentosidine in patients with rheumatoid arthritis. J Physiol Anthropol Appl Hum Sci. 2004;23:19–24.

    Article  Google Scholar 

  • Kerr J, Anderson C, Lippman SM. Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol. 2017;18:e457–71.

    Article  PubMed  Google Scholar 

  • Kim DH, Kim JY, Yu BP, et al. The activation of NF-κB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology. 2008;9:33–47.

    Article  CAS  PubMed  Google Scholar 

  • Lee C, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70:1564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Raffaghello L, Brandhorst S, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 2012;4:124ra27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg RT, et al. Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT (BOOG 2013-14) trial. Breast Cancer Res. 2021;185(3):741–58.

    Article  CAS  Google Scholar 

  • Mattison JA, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489:31–321.

    Article  CAS  Google Scholar 

  • Mercken EM, Crosby SD, Lamming DW, et al. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013;12:645–51.

    Article  CAS  PubMed  Google Scholar 

  • Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45.

    Article  PubMed  Google Scholar 

  • Mukherjee P, Abate LE, Seyfried TN. Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res. 2004;10:5622–9.

    Article  CAS  PubMed  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306:2105–8.

    Article  CAS  PubMed  Google Scholar 

  • Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018;18(11):707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nindrea RD, Aryandono T, Lazuardi L. Breast cancer risk from modifiable and non-modifiable risk factors among women in Southeast Asia: a meta-analysis. Asian Pac J Cancer Prev. 2017;18(12):3201–6.

    PubMed  PubMed Central  Google Scholar 

  • Ohkura N, Sakaguchi S. Foxo1 and Foxo3 help Foxp3. Immunity. 2010;33:835–7.

    Article  CAS  PubMed  Google Scholar 

  • Ouyang W, Liao W, Luo CT, et al. Novel Foxo1-dependent transcriptional programs control T reg cell function. Nature. 2012;491:554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrocola F, et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell. 2016;30:147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pistollato F, Forbes-Hernandez TY, Iglesias RC, et al. Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: possible implications for cancer treatment. Semin Cancer Biol. 2021;73:45–57.

    Article  CAS  PubMed  Google Scholar 

  • Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2012;2:778–90.

    Article  CAS  PubMed  Google Scholar 

  • Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffaghello L, et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A. 2008;105:8215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran M, Li Z, Yang L, et al. Calorie restriction attenuates cerebral ischemic injury via increasing SIRT1 synthesis in the rat. Brain Res. 2015;1610:61–8.

    Article  CAS  PubMed  Google Scholar 

  • Rinninella E, Fagotti A, Cintoni M, et al. Nutritional interventions to improve clinical outcomes in ovarian cancer: a systematic review of randomized controlled trials. Nutrients. 2019;11(6):1404.

    Article  CAS  PubMed Central  Google Scholar 

  • Ruby CE, Weinberg AD. The effect of aging on OX40 agonist-mediated cancer immunotherapy. Cancer Immunol Immunother. 2009;58:1941–7.

    Article  CAS  PubMed  Google Scholar 

  • Schug TT, Xu Q, Gao H, et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol. 2010;30:4712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein C, Colditz G. Modifiable risk factors for cancer. Br J Cancer. 2004;90(2):299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, et al. Fasting inhibits colorectal cancer growth by reducing M2 polarization of tumor-associated macrophages. Oncotarget. 2017;8:74649–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor R. Calorie restriction for long-term remission of type 2 diabetes. Clin Med (Lond). 2019;19:37–42.

    Article  Google Scholar 

  • Vernieri C, Signorelli D, Galli G, et al. Exploiting fasting-mimicking diet and metformin to improve the efficacy of platinum-pemetrexed chemotherapy in advanced LKB1-inactivated lung adenocarcinoma: the FAME trial. Clin Lung Cancer. 2019;20(3):e413–7.

    Article  CAS  PubMed  Google Scholar 

  • Vernieri C, Ligorio F, Zattarin E, et al. Fasting-mimicking diet plus chemotherapy in breast cancer treatment. Nat Commun. 2020;11(1):4274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss M, et al. ERGO2: a prospective, randomized trial of calorie-restricted ketogenic diet and fasting in addition to reirradiation for malignant glioma. Int J Radiat Oncol Biol Phys. 2020;108(4):987–95.

    Article  PubMed  Google Scholar 

  • Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50:S138–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gacche, R.N. (2021). Do Fasting, CR and FMD Improve the Chemotherapy Response, Reduce Off-Target Toxicities and Enhance Antitumour Immunity? Illusion or Clinical Reality?. In: Dietary Research and Cancer . Springer, Singapore. https://doi.org/10.1007/978-981-16-6050-4_16

Download citation

Publish with us

Policies and ethics