Skip to main content

Nanotechnology for Biomedical Devices: Cancer Treatment

  • Chapter
  • First Online:
Nanotechnology for Electronic Applications

Abstract

The emergence of nanotechnology has provided the field of medicine with an excellent platform to explore and work with novel applications that show great potential to enhance the diagnostic and therapeutic procedures in cancer treatment and research. The methodologies regarding locating specific cells of nanoparticles are highlighted, which include active and passive targeting—two techniques that differ in the way nanoparticles target, interact, and deliver therapeutics to cancer cells. Other factors that affect the targeting of cancer cells such as nanoparticle shape, tumor permeability, as well as an understanding of the biological environment is also emphasized. Various applications regarding nanoparticles are discussed in detail; both organic and inorganic. Such examples included in the report are: liposomal nanoparticles, quantum dots, and gold nanoparticles, which have shown much promise in terms of drug delivery, imaging, and cancer treatment. Furthermore, cancer imaging and the diagnostic process regarding nanoparticles are further discussed to stress the importance of imaging and screening of cancer cells. Factors involving the design and potential issues in imaging are also underlined. The challenges concerning potential cytotoxicity, unanticipated behaviours, and bio-compatibility of nanoparticles that still remain are pointed out. However, it is clear that there is a strong potential for nanotechnology to revolutionize cancer diagnosis and treatment. This report focuses on various nanotech prospects, their methodologies and significance, as well as the benefits and disadvantages in cancer detection and imaging, diagnosis, and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Admad M et al (2012) Nanometric gold in cancer nanotechnology: current status and future prospect. J Pharm Pharmacol: 634–651

    Google Scholar 

  2. Ai J, Biazar E, Jafarpor M, Montazeri M, Majdi A, Aminifard S, Mandana Z, Akbari H, Rad H (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomed 6:1117–1127

    CAS  Google Scholar 

  3. Alexis F, Pridgen E, Molnar L, Farokhzad O (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4). http://pubs.acs.org.ezproxy.lib.ryerson.ca/doi/abs/https://doi.org/10.1021/mp800051m

  4. Arvizo R, Bhattacharya R, Mukherjee P (2010) Expert Opin Drug Deliv 7:753

    CAS  Google Scholar 

  5. Ayub A, Nazir S, Hussain T, Rashid U, MacRobert A (2014) Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed Nanotechnol Biol Med 10:19–34

    Google Scholar 

  6. Barenholz Y (2012) Doxil-the first FDA approved nano-drug: lessons learned. US National Library of Medicine National Institute of Health. http://www.ncbi.nlm.nih.gov/pubmed/22484195

  7. Bertrand N, We J, Xu X, Kamaly N, Farokhzad O (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    CAS  Google Scholar 

  8. Bhati W, Vishwa A (2013) Nanotechnology method comparison for early detection of Cancer. I.J. Intell Syst Appl 03:58–65. https://doi.org/10.5815/ijisa.2013.03.06

    Article  Google Scholar 

  9. Bhati W, Vishwa A (2013) Nanotechnology method comparison for early detection of cancer. Int J Intell Syst Appl 5(3):58–65. Web

    Google Scholar 

  10. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biol 33(9). http://www.nature.com/nbt/journal/v33/n9/full/nbt.3330.html

  11. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    CAS  Google Scholar 

  12. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    CAS  Google Scholar 

  13. Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle”, architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042. Web

    Google Scholar 

  14. Cagdas M, Sezer A, Bucak S (2014) Liposomes as potential drug carrier systems for drug delivery. Intech. http://www.intechopen.com/books/application-of-nanotechnology-in-drug-delivery/liposomes-as-potential-drug-carrier-systems-for-drug-delivery#article-front

  15. Chaudhari K, Ukawala M, Manjappa A, Kumar A, Mundada P, Mishra A, Mathur R, Monkkonen J, Murthy R (2012) Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res 29:53–68. http://link.springer.com.ezproxy.lib.ryerson.ca/article/10.1007%2Fs11095-011-0510-x

  16. Chen J et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–477

    CAS  Google Scholar 

  17. Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 64(7):640–665

    CAS  Google Scholar 

  18. Clancy L, Goodman P, Sinclair H, Dockery DW (2002) Effect of air pollution control on death rates in Dublin, Ireland: an intervention study. Lancet 360:1210–1214

    Google Scholar 

  19. Clementi C, Miller K, Mero A, Satchi-Fainaro R, Pasut G (2011) Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. Mol Pharm 8:1063–1072

    CAS  Google Scholar 

  20. Cuenca AG, Jiang H, Hochwald SN et al (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107:459–466

    CAS  Google Scholar 

  21. Daniel M, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  Google Scholar 

  22. Debbage P, Jaschke W (2008) Molecular imagining with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130:845–875

    CAS  Google Scholar 

  23. Demers LM, et al (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, 296, 1836–1838

    Google Scholar 

  24. Donaldson K, Poland CA (2013) Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol 24(4):724–734. https://doi.org/10.1016/j.copbio.2013.05.003

    Article  CAS  Google Scholar 

  25. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728

    CAS  Google Scholar 

  26. Hanahan D, Robert A (2011) Weinberg, hallmarks of cancer: the next generation. Cell 144(5):646–674. ISSN 0092-8674

    Google Scholar 

  27. Dow Chemical Company (2014) Chemical companies; dow electronic materials to build first, large-scale quantum dot manufacturing operation in Korea. Nanotechnol Wkly 142.

    Google Scholar 

  28. Durr S, Janko C, Lyer S, Tripal P, Schwarz M, Zaloga R, Alexiou C (2013) Magnetic nanoparticles for cancer therapy. Nanotechnol Rev 2(4):395–409

    Google Scholar 

  29. El-Sayed IH (2010) Nanotechnology in head and neck cancer: the race is on. Curr Oncol Rep 12(2):121–128. https://doi.org/10.1007/s11912-010-0087-2

    Article  CAS  Google Scholar 

  30. Gentile F, Ferrari M, Decuzzi P (2008) The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Ann Biomed Eng 36:254–261

    Google Scholar 

  31. Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco Al, Prato M (2012) Targeting carbon nanotubes against cancer. R Soc Chem 48(33):3911–3926

    Google Scholar 

  32. Fakhoury M, Takechi R, Al-Salami H (2014) Drug permeation across the blood-brain barrier: applications of nanotechnology. Br J Med Med Res: 547–556

    Google Scholar 

  33. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    CAS  Google Scholar 

  34. Ferrari M (2010) Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol 28(4):181–188

    CAS  Google Scholar 

  35. Fritz J, et al (2000) Translating biomeolecular recognition into nanomechanics, 288, 316–318

    Google Scholar 

  36. Gao X et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol 22(8):969–976. Web

    Google Scholar 

  37. Ghasemi Y, Peymani P, Afifi S (2009) Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed 80:156–165

    Google Scholar 

  38. Goodall S, Jones M, Mahler S (2014) Monoclonal antibody-targeted polymeric nanoparticles for cancer therapy—future prospects. J Chem Technol Biotechnol 90:1169–1176. http://journals1.scholarsportal.info.ezproxy.lib.ryerson.ca/details/02682575/v90i0007/1169_mapnfctp.xml

  39. Grossman JH, McNeil SE (2012) Nanotechnology in cancer medicine. (Cover story). Phys Today 65(8):38–42

    Google Scholar 

  40. Gunasekera UA, Pankhurst QA, Douek M (2009) Imaging applications of nanotechnology in cancer. Target Oncol 4(3):169–181. https://doi.org/10.1007/s11523-009-0118-9

    Article  Google Scholar 

  41. Jawaid AM, Chattopadhyay S, Wink DJ, Page LE, Snee PT (2013) “A”. ACS Nano 7(4):3190–3197. https://doi.org/10.1021/nn305697q

  42. Jiang W, Kim BY, Rutka JT, Chan WC (2007) Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv 4(6):621–633. https://doi.org/10.1517/17425247.4.6.621

    Article  CAS  Google Scholar 

  43. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) (2010), A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328

    CAS  Google Scholar 

  44. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine (lond) 6(4):715–728

    CAS  Google Scholar 

  45. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35

    Google Scholar 

  46. Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Sakamoto W, Yogo T, Ishimura K (2014) Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4(8)

    Google Scholar 

  47. Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):1517

    CAS  Google Scholar 

  48. Karathanasis E, Suryanarayanan S, Balusu S, McNeeley K, Sechopoulos I, Karellas A, Annapragada A, Bellamkonda R (2009) Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology 250:398–406

    Google Scholar 

  49. Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdorster G (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21(Suppl 1):55–60

    CAS  Google Scholar 

  50. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377

    CAS  Google Scholar 

  51. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y (2005) Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J Pharmacol Exp Ther 315:196–202

    CAS  Google Scholar 

  52. Leroux J-C, Allemann E, De Jaeghere F, Duelker E, Gurny R (1996) Biodegradable nanoparticles—from sustained release formulation to improved site specific drug delivery. J Control Release 30:339–350

    Google Scholar 

  53. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    CAS  Google Scholar 

  54. Yezhelyev MV, Al-Hajj A, Morris C, et al (2007) In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv Mater 19(20):3146–3151. Web

    Google Scholar 

  55. Malam Y, Loizidou M, Seifalian A (2009) Liposomes and Nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11). http://www.sciencedirect.com.ezproxy.lib.ryerson.ca/science/article/pii/S0165614709001370

  56. Marega R, Karmani L, Flamant L, Nageswaran PG, Valembois V, Masereel B, Bonifazi D (2012) Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study. J Mater Chem 22(39):2135–21312. https://doi.org/10.1039/c2jm33482h

    Article  CAS  Google Scholar 

  57. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Can Res 46:6387–6392

    CAS  Google Scholar 

  58. Mühlfeld C, Gehr P, Rothen-Rutishauser B (2008) Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 138:387–391

    Google Scholar 

  59. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    CAS  Google Scholar 

  60. Nima Z, Mahmood M, Karmakar A, Mustafa T, Bourdo S, Xu Y, Biris A (2013) Single-walled carbon nanotubes as specific targeting and Raman spectroscopic agents for detection and discrimination of single human breast cancer cells. J Biomed Opt. https://doi.org/10.1117/1.JBO.18.5.055003

    Article  Google Scholar 

  61. Oerlemans C, Bult W, Bos M, Storm G, Nijsen J, Hennick W (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982955/

  62. Osaka T, Nakanishi T, Shanmugan S, Takahama S, Zhang H (2009) Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Elsevier Coll Surf B 71(2):325–330

    CAS  Google Scholar 

  63. Pagano A, Honore S, Esteve M, Braguer D (2012) Nanodrug potential in cancer therapy: efficacy/toxicity studies in cancer cells. Int J Nanotechnol 9(3/4/5/6/7):502

    Google Scholar 

  64. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949

    Google Scholar 

  65. Peng, C-W, Li Y (2010) Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J Nanomater 2010(2010):1–11. Web

    Google Scholar 

  66. Poland CA, Byrne F, Cho WS, Prina-Mello A, Murphy FA, Davies GL, Coey JM, Gounko Y, Duffin R, Volkov Y et al (2012) Length dependent pathogenic effects of nickel nanowires in the lungs and the peritoneal cavity. Nanotoxicology 6:899–911

    CAS  Google Scholar 

  67. Prajapati PM, Shah Y, Sen DJ (2010) Gold nanoparticles: a new approach for cancer detection. J Chem Pharm Res 2(1):30–37

    CAS  Google Scholar 

  68. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    Google Scholar 

  69. Reynolds AR, Moein Moghimi S, Hodivala-Dilke K (2003) Nanoparticle-mediated gene delivery to tumour neovasculature. Trends Mol Med 9:2–4

    CAS  Google Scholar 

  70. Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomed 1(2):209–217

    CAS  Google Scholar 

  71. Roberts MJ, Bentley MD, Harris JM (2012) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 64:116–127

    Google Scholar 

  72. Roux E, Francis MF, Winnik FM, Leroux JC (2004) Stimuli responsive liposome-polymer complexes: towards the design of intelligent drug carriers. In: Svenson S (ed) Carrier based drug delivery systems. CS Symposium Series 879, American Chemical Society, Washington, DC, pp 26–39

    Google Scholar 

  73. Rutishauser R, Mühlfeld C, Blank F, Musso C, Gehr P (2007) Translocation of particles and inflammatory responses after exposure to ine particles and nanoparticles in an epithelial air-way model. Part Fibre Toxicol 4:9–15

    Google Scholar 

  74. Salmaso S, Caliceti P (2013) Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv 2013

    Google Scholar 

  75. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433

    CAS  Google Scholar 

  76. Sawant R, Torchilin V (2010) Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter 6:4026–4044

    Google Scholar 

  77. Sengupta S, Sasisekharan R (2007) Exploiting nanotechnology to target cancer. Br J Cancer 96:1315–1319

    CAS  Google Scholar 

  78. Shi C, et al (2008, 2009) Quantum dots-based multiplexed immunohistochemistry of protein expression in human prostate cancer cells. Eur J Histochem EJH 52.2:127–34. Web

    Google Scholar 

  79. Sinha R, Kim GJ, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917. https://doi.org/10.1158/1535-7163.MCT-06-0141

    Article  CAS  Google Scholar 

  80. Slingerland M, Guchelaar H-J, Gelderblom H (2012) Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Disc Today 17:160–166

    CAS  Google Scholar 

  81. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magical bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    CAS  Google Scholar 

  82. Sun Y et al (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2:481–485

    CAS  Google Scholar 

  83. Sutradhar K, Amin M (2013) Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol 2014. http://search.proquest.com.ezproxy.lib.ryerson.ca/docview/1503653656/fulltextPDF?accountid=13631

  84. Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E (2014) Targeted nanotechnology for cancer imaging. Adv Drug Deliv Rev 76:79–97. https://doi.org/10.1016/j.addr.2014.08.002

    Article  CAS  Google Scholar 

  85. Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22(2011):115101. http://iopscience.iop.org.ezproxy.lib.ryerson.ca/article/10.1088/09574484/22/11/115101/meta;jsessionid=6918F0A405162504A3701210EA0BB28D.c3.iopscience.cld.iop.org

    Google Scholar 

  86. Wang X, Yang L, Chen Z, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA A Cancer J Clinic 58:97–110

    Google Scholar 

  87. Watson P, Jones AT, Stephens DJ (2005) Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev 57:43–61

    CAS  Google Scholar 

  88. Xia Y et al (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924

    CAS  Google Scholar 

  89. Yacobi NR, Phuleria HC, Demaio L, Liang CH, Peng CA, Sioutas C et al (2007) Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol in Vitro 21:1373–1381

    CAS  Google Scholar 

  90. Zhong Y, Meng F, Deng C, Zhong Z (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 15:1955–1969. http://pubs.acs.org.ezproxy.lib.ryerson.ca/doi/pdf/https://doi.org/10.1021/bm5003009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Dahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cappuccitti, A. et al. (2022). Nanotechnology for Biomedical Devices: Cancer Treatment. In: Mubarak, N.M., Gopi, S., Balakrishnan, P. (eds) Nanotechnology for Electronic Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-6022-1_11

Download citation

Publish with us

Policies and ethics