Skip to main content

Fuzzy Model of Transmission Dynamics of COVID-19 in Nepal

  • 70 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1405)

Abstract

Coronavirus disease is an infectious viral disease threatening the world. It was first found in China, in December 2019, and it has been spreading in more than 210 countries. The heterogeneity of the transmission of the disease should be considered to formulate the model of the disease dynamics. Deterministic models assume constant recovery rate and transmission rate of the disease that are inconsistent with the reality. Using fuzzy theory, the heterogeneity and uncertainty on the disease transmission can be described. In the present work, we study transmission of COVID-19 with fuzzy SAIHR compartmental model. We consider asymptomatic and symptomatic infected compartments. Also, we calculate the basic reproduction number \({R}_{0}\), fuzzy basic reproduction \({R}_{0}^{f}\) and describe the relation between them with different virus loads. Simulation is made to study results of the model graphically.

Keywords

  • COVID-19
  • Fuzzy compartmental model
  • Fuzzy reproduction number
  • Asymptomatic infected
  • Symptomatic infected

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-5952-2_37
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-5952-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. World Health Organization: Situation update. View corona virus disease 2019 (COVID 19) (2020). https://www.worldmeters.info/coronavirus

  2. Bastola, A., Sah, R., Morales, A.J.R., Chu, D.: The first 2019 novel corona virus in Nepal. Natl. Libr. Med. 20, 279–280 (2020)

    Google Scholar 

  3. MoHP: Nepal’s Latest Update on COVID-19. Ministry of Health and Population, Kathmandu, Nepal (2020)

    Google Scholar 

  4. World Health Organization: Modes of transmission of virus causing COVID-19: Implication for IPC precaution recommendation, 29 March 2020. https://www.who.int/newsroom/commentaries/detail/mods-of-transmission-of-virus-causing-covid-10-implication-foripc-precaution-recommendations

  5. Pan, Y., Zhang, D., Yang, P., Poon, L.L.M., Wang, Q.: Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 20(4), 411–412 (2020)

    CrossRef  Google Scholar 

  6. Polonsky, J.A., et al.: Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. B 374, 1–11 (2019)

    CrossRef  Google Scholar 

  7. Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Sensitivity analysis of COVID-19 transmission dynamics. Int. J. Adv. Eng. Res. Appl. (IJA-ERA) 6(4), 72–82 (2020)

    Google Scholar 

  8. Qasim, M., Ahmad, W., Yoshida, M., Gould, M., Yasir, M: Analysis of the worldwide corona virus (COVID-19) pandemic trend: a modeling study of predict its spread, medRxiy (2020)

    Google Scholar 

  9. Quasim, M., Ahmad, W., Zhang, S., Yasir, M., Azhar, M.: Data model to predict prevalence of COVID-19 in Pakistan, medRxiy (2020)

    Google Scholar 

  10. Singh, J., Ahluwalia, P.K., Kumar, A.: Mathematical model based COVID-19 prediction in India and its different stated. medRxiy (2020)

    Google Scholar 

  11. Tang, Y., Wang, S.: Mathematical modeling of COVID-19 in the United States. Emerg. Microbes Infect. 9(1), 827–829 (2020)

    CrossRef  Google Scholar 

  12. Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Mathematical study on impact of temperature in malaria disease transmission dynamics. Adv. Comput. Sci. 1(2), 1–8 (2018)

    Google Scholar 

  13. Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Fuzzy approach analyzing SEIR-SEI sengue dynamics. Biomed. Res. Int. 2020, 1–11 (2020)

    CrossRef  Google Scholar 

  14. Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Modeling transmission dynamics of COVID-19 in Nepal. J. Appl. Math. Phys. 8, 2167–2173 (2020)

    CrossRef  Google Scholar 

  15. Phaijoo, G.R., Gurung, D.B.: Sensitivity analysis of SEIR-SEI model of dengue disease. GAMS J. Math. Math. Biosci. 6(a), 41–50 (2018)

    Google Scholar 

  16. Phaijoo, G.R., Gurung, D.B.: Mathematical model of dengue disease transmission dynamics with control measures. J. Adv. Math. Comput. Sci. 23, 1–12 (2017)

    CrossRef  Google Scholar 

  17. Kermack, W.O., MacKendrick, A.G.: Contribution to the mathematical theory of epidemic. Bull. Math. Biol. 53(1–2), 33–55 (1927)

    Google Scholar 

  18. Li, Y., Wang, B., Peng, R., Zhan, Y., Liu, Z., Jiang, X., Zhao, B.: Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures. Ann. Infect. Dis. Epidemiol. 5(1), 1–9 (2020)

    Google Scholar 

  19. Phaijoo, G.R., Gurung, D.B.: Mathematical study of dengue disease transmission in multi-patch environment. Appl. Math. 7, 1521–1533 (2016)

    CrossRef  Google Scholar 

  20. Souleiman, Y., Mohamed, A., Ismail, L: Analysis the dynamics of SIHR model: COVID-19 case in Djibouti. Math. Comput. Sci. Appl. Math. 239(1), (2020)

    Google Scholar 

  21. Zadeh, L.A.: Fuzzy set. Inf. Control 8, 338–353 (1965)

    CrossRef  Google Scholar 

  22. Mondal, P.K., Jana, S., Haldar, P., Kar, T.K.: Dynamical behavior of an epidemic model in a fuzzy transmission. Int. J. Univ. Fuzziness Knowl. Base Syst. 23, 651–665 (2015)

    MathSciNet  CrossRef  Google Scholar 

  23. De Barros, L.C., Ferreira Laite, M.B., Bassanez, R.C.: The SI epidemiological models with a fuzzy transmission parameter. Int. J. Comput. Math. Appl. 45, 1619–1628 (2003)

    Google Scholar 

  24. Massad, E., Ortega, N.R.S., De Barros, L.C., Struchiner, C.J.: Fuzzy logic in action: application in epidemiology and beyond. Stud. Fuzzyness Soft Cimput. 232, 97–110 (2008)

    CrossRef  Google Scholar 

  25. Ahmad, S., Ullha, A., Shah, K., Salahshour, S., Ahmadian, A., Ciano, T.: Fuzzy fractional-order model of the novel coronavirus. Adv. Differ. Eqn. 472, 1–17 (2020)

    Google Scholar 

  26. Barros, L.C., Oliveira, R.Z.G., Leite, M.B.F., Bassanezi, R.C.: Epidemiological model of directly transmitted disease: An approach via fuzzy sets theory. Int. J. Univ. Fuzzyness Knowl. Based Syst. 22(5), 769–781 (2014)

    MathSciNet  CrossRef  Google Scholar 

  27. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition in Heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)

    MathSciNet  CrossRef  Google Scholar 

  28. Driessche, P., Watmough, J.: Reproduction number and sub-threshold endemic equilibria for compartment models for disease transmission. Math. Biosci. 180, 29–48 (2002)

    MathSciNet  CrossRef  Google Scholar 

  29. Verma, R., Tiwari, S.P., Ranjit, U.: Dynamical behavior of fuzzy SIR epidemic model. Confer. Pap. Adv. Intel. Syst. Comput. 10, 482–492 (2018)

    Google Scholar 

  30. Supriya, L.: Virus Load Peak Before Symptom Onset in COVID-19. News Medical Life Science. https://www.news-medical.net/news/20201005/Viral-loads-peakbeforesymptom-onset-in-COVID-19.aspxl

  31. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2nd edn. (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauri Bhuju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bhuju, G., Phaijoo, G.R., Gurung, D.B. (2022). Fuzzy Model of Transmission Dynamics of COVID-19 in Nepal. In: Sahni, M., Merigó, J.M., Sahni, R., Verma, R. (eds) Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy. Advances in Intelligent Systems and Computing, vol 1405. Springer, Singapore. https://doi.org/10.1007/978-981-16-5952-2_37

Download citation