World Health Organization: Situation update. View corona virus disease 2019 (COVID 19) (2020). https://www.worldmeters.info/coronavirus
Bastola, A., Sah, R., Morales, A.J.R., Chu, D.: The first 2019 novel corona virus in Nepal. Natl. Libr. Med. 20, 279–280 (2020)
Google Scholar
MoHP: Nepal’s Latest Update on COVID-19. Ministry of Health and Population, Kathmandu, Nepal (2020)
Google Scholar
World Health Organization: Modes of transmission of virus causing COVID-19: Implication for IPC precaution recommendation, 29 March 2020. https://www.who.int/newsroom/commentaries/detail/mods-of-transmission-of-virus-causing-covid-10-implication-foripc-precaution-recommendations
Pan, Y., Zhang, D., Yang, P., Poon, L.L.M., Wang, Q.: Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 20(4), 411–412 (2020)
CrossRef
Google Scholar
Polonsky, J.A., et al.: Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. B 374, 1–11 (2019)
CrossRef
Google Scholar
Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Sensitivity analysis of COVID-19 transmission dynamics. Int. J. Adv. Eng. Res. Appl. (IJA-ERA) 6(4), 72–82 (2020)
Google Scholar
Qasim, M., Ahmad, W., Yoshida, M., Gould, M., Yasir, M: Analysis of the worldwide corona virus (COVID-19) pandemic trend: a modeling study of predict its spread, medRxiy (2020)
Google Scholar
Quasim, M., Ahmad, W., Zhang, S., Yasir, M., Azhar, M.: Data model to predict prevalence of COVID-19 in Pakistan, medRxiy (2020)
Google Scholar
Singh, J., Ahluwalia, P.K., Kumar, A.: Mathematical model based COVID-19 prediction in India and its different stated. medRxiy (2020)
Google Scholar
Tang, Y., Wang, S.: Mathematical modeling of COVID-19 in the United States. Emerg. Microbes Infect. 9(1), 827–829 (2020)
CrossRef
Google Scholar
Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Mathematical study on impact of temperature in malaria disease transmission dynamics. Adv. Comput. Sci. 1(2), 1–8 (2018)
Google Scholar
Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Fuzzy approach analyzing SEIR-SEI sengue dynamics. Biomed. Res. Int. 2020, 1–11 (2020)
CrossRef
Google Scholar
Bhuju, G., Phaijoo, G.R., Gurung, D.B.: Modeling transmission dynamics of COVID-19 in Nepal. J. Appl. Math. Phys. 8, 2167–2173 (2020)
CrossRef
Google Scholar
Phaijoo, G.R., Gurung, D.B.: Sensitivity analysis of SEIR-SEI model of dengue disease. GAMS J. Math. Math. Biosci. 6(a), 41–50 (2018)
Google Scholar
Phaijoo, G.R., Gurung, D.B.: Mathematical model of dengue disease transmission dynamics with control measures. J. Adv. Math. Comput. Sci. 23, 1–12 (2017)
CrossRef
Google Scholar
Kermack, W.O., MacKendrick, A.G.: Contribution to the mathematical theory of epidemic. Bull. Math. Biol. 53(1–2), 33–55 (1927)
Google Scholar
Li, Y., Wang, B., Peng, R., Zhan, Y., Liu, Z., Jiang, X., Zhao, B.: Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures. Ann. Infect. Dis. Epidemiol. 5(1), 1–9 (2020)
Google Scholar
Phaijoo, G.R., Gurung, D.B.: Mathematical study of dengue disease transmission in multi-patch environment. Appl. Math. 7, 1521–1533 (2016)
CrossRef
Google Scholar
Souleiman, Y., Mohamed, A., Ismail, L: Analysis the dynamics of SIHR model: COVID-19 case in Djibouti. Math. Comput. Sci. Appl. Math. 239(1), (2020)
Google Scholar
Zadeh, L.A.: Fuzzy set. Inf. Control 8, 338–353 (1965)
CrossRef
Google Scholar
Mondal, P.K., Jana, S., Haldar, P., Kar, T.K.: Dynamical behavior of an epidemic model in a fuzzy transmission. Int. J. Univ. Fuzziness Knowl. Base Syst. 23, 651–665 (2015)
MathSciNet
CrossRef
Google Scholar
De Barros, L.C., Ferreira Laite, M.B., Bassanez, R.C.: The SI epidemiological models with a fuzzy transmission parameter. Int. J. Comput. Math. Appl. 45, 1619–1628 (2003)
Google Scholar
Massad, E., Ortega, N.R.S., De Barros, L.C., Struchiner, C.J.: Fuzzy logic in action: application in epidemiology and beyond. Stud. Fuzzyness Soft Cimput. 232, 97–110 (2008)
CrossRef
Google Scholar
Ahmad, S., Ullha, A., Shah, K., Salahshour, S., Ahmadian, A., Ciano, T.: Fuzzy fractional-order model of the novel coronavirus. Adv. Differ. Eqn. 472, 1–17 (2020)
Google Scholar
Barros, L.C., Oliveira, R.Z.G., Leite, M.B.F., Bassanezi, R.C.: Epidemiological model of directly transmitted disease: An approach via fuzzy sets theory. Int. J. Univ. Fuzzyness Knowl. Based Syst. 22(5), 769–781 (2014)
MathSciNet
CrossRef
Google Scholar
Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition in Heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)
MathSciNet
CrossRef
Google Scholar
Driessche, P., Watmough, J.: Reproduction number and sub-threshold endemic equilibria for compartment models for disease transmission. Math. Biosci. 180, 29–48 (2002)
MathSciNet
CrossRef
Google Scholar
Verma, R., Tiwari, S.P., Ranjit, U.: Dynamical behavior of fuzzy SIR epidemic model. Confer. Pap. Adv. Intel. Syst. Comput. 10, 482–492 (2018)
Google Scholar
Supriya, L.: Virus Load Peak Before Symptom Onset in COVID-19. News Medical Life Science. https://www.news-medical.net/news/20201005/Viral-loads-peakbeforesymptom-onset-in-COVID-19.aspxl
Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2nd edn. (2003)
Google Scholar